THE HEALTH IMPACT OF SAHARIAN DUST EXPOSURE

MICHAEL KOTSFYAKIS1,2, SOTIRIOS G. ZAROGIANNIS2, and EVRIDIKI PATELARO2

1 Czech Academy of Sciences, Ceske Budejovice (Budweis), Czech Republic
2 Biology Center, Institute of Parasitology
3 University of Thessaly, Larissa, Greece

Abstract

Air pollution is a high priority global health concern. The health damaging effects of ambient particulate matter (PM), a component of air pollution, are extensively documented, with 1.4% of deaths worldwide resulting from exposure to PM. A growing body of evidence suggests that mineral dust, found in PM, may contribute to some of these deleterious health impacts. Approximately half of atmospheric mineral dust originates from the Sahara Desert. This systematic but concise review summarizes the findings from recent literature exploring the adverse health effects of Saharan dust particles worldwide. The authors have shown that 1) PM contributes to all-cause and cause-specific mortality and morbidity; 2) the PM arising from Saharan dust contributes to excess all-cause and cause-specific mortality and morbidity; and 3) larger particle sizes may be more harmful than smaller particle sizes. However, there remain many questions regarding their effects on vulnerable patient populations, underlying mechanisms of action, and regional variations in both environmental and health effects. This review highlights the urgent need for continued and deeper analyses of this emerging public health issue. Int J Occup Med Environ Health. 2019;32(6):749–60

Key words: air pollution, particulate matter, public health, dust, Africa, Northern Africa

INTRODUCTION

The World Health Organization (WHO) regards air pollution as a top global health priority [1]. The adverse effects of particulate matter (PM), a component of air pollution, on human health are well documented. The WHO estimates that 1.4% of all deaths worldwide result from exposure to PM [2]. One of the components of PM, atmospheric mineral dust, has recently attracted attention since it may be responsible for some of the hazardous effects of PM [3]. The main source of atmospheric mineral dust is from the desert, with approximately half originating from the Sahara Desert [3], although dust also spreads from other regions including the Arabian Peninsula, Central Asia, China, Australia, America, and South Africa. Each year, 1–3 gigatons of dust are emitted from these regions [4]. Sand and dust storms frequently occur in semi-arid and arid climates. Thunderstorms and cyclones produce strong pressure gradients that increase the wind speed. The wind...
then lifts and disperses large amounts of sand and dust from the soil into the atmosphere. This dust can spread several thousand kilometers from its origin. Sometimes, precipitation clears atmospheric dust, leading to wet rather than dry deposits of dispersed dust. Therefore, climatic conditions play a significant role in desert dust movement. Since vegetation can protect the ground from erosion during storms, droughts and comparable environmental conditions may contribute to the development of dust storms [4].

The Sahara Desert disperses dust worldwide, with 12% travelling north to Europe, 28% west to America, and 60% south to the Gulf of Guinea [3]. Saharan dust then contributes to PM levels exceeding the threshold limits established by the European Union (EU) and WHO [3]. Almost 4 million tons of desert dust from the Sahara are transported to Mediterranean regions, leading to high PM levels. Notably, during Saharan dust events, the mineral dust concentrations in PM increase by 35%, and PM concentrations are increased in general. One study showed that of 6 exceedances of the EU threshold limits in a 6-month period, 5 occurred during Saharan dust days [5].

Due to the potential health impact of its dispersal, the deleterious effect of atmospheric dust is now emerging as a global health concern. As a result, there has been increasing interest in the role of Saharan dust dispersion on health over the last 2 decades [2]. Several theories on how Saharan dust impacts on human health have been proposed. Given that Saharan dust is a component of PM, it is respirable, so it could potentially increase the risk of respiratory and related illnesses and, in consequence, related cause-specific and total mortality. Additionally, Saharan dust dispersion has been linked to the transport of various micro-organisms, so it may also cause infectious diseases [2,3].

In this short review, the authors have summarized the findings presented in recent literature exploring the association between Saharan dust particles and human health, with a view to collating the available evidence and establishing areas of research that require further effort in order to better understand and eventually tackle this important domain.

METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed [6]. The authors searched the PubMed database using the terms “Saharan dust” OR “desert dust” AND “health.” Studies selected for this review (after removing duplicates) were limited to those conducted on humans and written in English, and the final search took place on May 20, 2019. The search scheme is presented in Figure 1.

RESULTS

Nineteen studies specifically investigated the health impacts of Saharan dust exposure on human health, as summarized in Table 1. Of these, 17 examined populations in Southern Europe, specifically in the Mediterranean basin, which experiences proven increases in the ambient PM levels recorded in air quality monitoring networks from Saharan dust, due to proximity to the Sahara and atmospheric dynamics [7]. Two studies focused on Caribbean populations [8,9]. All studies were epidemiological studies using a mixture of analytical techniques but mainly time-series analyses. Primary endpoints were mainly all-cause mortality or cause-specific (cardio-respiratory) mortality, or, for those studies examining emergency admissions to hospital, either hospital admission rates [10–14] or asthma attacks [8,9]. Since the effects of air-borne particles are related to their chemical composition and size, some studies investigated associations between health outcomes and different particle sizes but all studies included the coarse fraction (i.e., PM between 2.5 and 10 μm, PM$_{2.5-10}$). The results can be summarized as follows. First, in general, PM levels were associated with an increased risk of all-
cause and cause-specific mortality, whether of desert or non-desert origin [11,12,15–19]. In the studies examining hospital admissions or disease-specific outcomes, a similar trend was seen, with increased PM concentrations associated with increased numbers of hospitalizations [10,12] or hospital-treated asthma attacks [8,9]. Therefore, PM levels, whether of desert or non-desert origin, appear to have an impact on general and respiratory health.

Second, most but not all studies detected effects on outcomes attributable to the Saharan dust component of the detected PM. These effects tended to be stronger for cause-specific outcomes, i.e., those related to cardiovascular and respiratory morbidity. For example, Trianti et al. [13] observed that desert dust days were associated with higher numbers of ER visits for asthma, chronic obstructive pulmonary disease and respiratory infections, with increases of 38%, 57% and 60%, respectively (p < 0.001), while Staffoggia et al. [12] detected similar associations of mortality and hospitalizations with increases in desert and non-desert PM$_{10}$, but stronger associations with desert dust for cardiovascular mortality (1.10%, 95% CI: 0.16–2.06 compared with 0.49%; 95% CI: 0.31–1.29 for non-desert dust).

Similarly, Reyes et al. [11] reported that while periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM$_{2.5}$ concentrations, and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant
<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Study design</th>
<th>Population</th>
<th>Health data source</th>
<th>Period of observation</th>
<th>Outcome</th>
<th>PM fraction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renzi et al., 2018 [17]</td>
<td>Sicily, Italy</td>
<td>pooled time-series analysis</td>
<td>~5 million island inhabitants</td>
<td>total island population using health regional databases</td>
<td>Jan 2006–Dec 2012</td>
<td>cause-specific mortality PM$_{10}$</td>
<td>Non-accidental mortality increased by 2.27% (95% CI: 1.41–3.14) and 3.78% (95% CI: 3.19–4.37) per 10 μg/m3 increases in lag 0–5 non-desert and desert PM$_{10}$. Significant associations with cardiovascular (2.4% [95% CI: 1.3–3.4] and 4.5% [95% CI: 3.8–5.3]) and respiratory mortality (8.1% [95% CI: 6.8–9.5] and 6.3% [95% CI: 5.4–7.2]).</td>
<td></td>
</tr>
<tr>
<td>Trianti et al., 2017 [13]</td>
<td>Athens, Greece</td>
<td>retrospective case-control</td>
<td>~4 million island inhabitants</td>
<td>hospital databases</td>
<td>2001–2006</td>
<td>daily ER visits, daily ER visits for respiratory diseases PM$_{10}$</td>
<td>A 10 μg/m3 increase in PM$_{10}$ concentration was associated with a 1.95% (95% CI: 0.02–3.91) increase in respiratory ER visits but not desert dust episodes. Desert dust days were associated with higher numbers of ER visits for asthma, chronic obstructive pulmonary disease and respiratory infections, with increases of 38%, 57% and 60%, respectively (p < 0.001).</td>
<td></td>
</tr>
<tr>
<td>Diaz et al., 2017 [37]</td>
<td>Spain, countrywide</td>
<td>longitudinal time-series analysis</td>
<td>49 towns with > 10,000 inhabitants</td>
<td>national mortality statistics</td>
<td>Jan 2004–Dec 2009</td>
<td>mortality PM$_{10}$</td>
<td>Particulate matter (PM) on days with intrusions was associated with daily mortality in some regions.</td>
<td></td>
</tr>
<tr>
<td>Menendez et al., 2017 [14]</td>
<td>Gran Canaria, Spain</td>
<td>prospective longitudinal; case-control</td>
<td>2,854 adult emergency patients; 37 patients with allergies (asthma or allergic rhinitis)</td>
<td>in-hospital monitoring</td>
<td>Jan–Dec 2010</td>
<td>ER admissions, respiratory disease PM${10}$, PM${2.5}$</td>
<td>No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels.</td>
<td></td>
</tr>
<tr>
<td>Staffoggia et al., 2015 [12]</td>
<td>13 European cities in the Mediterranean basin</td>
<td>retrospective cross-sectional</td>
<td>13 large European cities</td>
<td>local mortality statistics and hospital discharge databases</td>
<td>2001–2010</td>
<td>mortality and hospital admissions PM${10}$, PM${2.5}$, PM$_{2.5-10}$</td>
<td>Associations of mortality and hospitalizations with 10 μg/m3 increases in desert and non-desert PM$_{10}$ were similar for all natural mortality (0.65%, 95% CI: 0.24–1.06 and 0.55%, 95% CI: 0.24–0.87), though the association with desert dust was stronger for cardiovascular mortality (1.10%, 95% CI: 0.16–2.06 compared with 0.49%, 95% CI: −0.31–1.29 for non-desert dust) and weaker for respiratory mortality (1.28%, 95% CI: −0.42–3.01 compared with 2.46%, 95% CI: 0.96–3.98).</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Location</td>
<td>Study Design</td>
<td>Number of Participants</td>
<td>Data Source</td>
<td>Study Period</td>
<td>Outcome Measure</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Akpinar-Elci et al., 2015 [8]</td>
<td>Grenada, Caribbean</td>
<td>Retrospective case-control</td>
<td>4411 hospital visits, adults and children</td>
<td>Hospital records</td>
<td>Jan 2001–Dec 2005</td>
<td>Hospital-treated asthma attacks</td>
<td>Variation in asthma was associated with a change in dust concentration ($R^2 = 0.036$, $p < 0.001$).</td>
<td></td>
</tr>
<tr>
<td>Cadelis et al., 2014 [9]</td>
<td>Guadeloupe, Caribbean</td>
<td>Time-stratified case-crossover</td>
<td>836 children, 5–15 years old</td>
<td>Tertiary hospital records</td>
<td>Jan 2011–Dec 2011</td>
<td>Hospital-treated asthma attacks in children</td>
<td>Excess risk percentages (IR%) for visits related to asthma in children aged 5–15 years on days with dust compared to days without dust were 9.1% (95% CI: 7.1–11.1) vs. 1.1% (95% CI: 2.5–4.6) for PM_{10} and 4.5% (95% CI: 2.5–6.5) vs. 1.6% (95% CI: 21.1–34) for $PM_{10-2.5}$.</td>
<td></td>
</tr>
<tr>
<td>Reyes et al., 2014 [11]</td>
<td>Madrid, Spain</td>
<td>Ecological time-series</td>
<td>NS</td>
<td>Tertiary hospital records, ER admissions</td>
<td>Jan 2003–Dec 2005</td>
<td>All-cause and cardiovascular/respiratory hospital admissions</td>
<td>Periods without Saharan dust intrusions were marked by a statistically significant association between daily mean $PM_{2.5}$ concentrations, and all- and circulatory-cause hospital admissions, while periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM_{10} and $PM_{10-2.5}$.</td>
<td></td>
</tr>
<tr>
<td>Alessandrin et al., 2013 [10]</td>
<td>Rome, Italy</td>
<td>Time-series analysis</td>
<td>NS; aged < 14 years or > 35 years</td>
<td>Daily hospital visits from regional public health database</td>
<td>2001–2004</td>
<td>All-cause and cardiovascular/respiratory emergency hospital admissions</td>
<td>Positive and statistically significant associations were found between $PM_{2.5-10}$ and cardiac diseases (for lag 0–1, 3.93%, 95% CI: 1.58–6.34), and between PM_{10} and cardiac, cerebrovascular, and respiratory diseases (for lag 0–1, 3.37%, 95% CI: 1.11–5.68; for lag 0, 2.64%, 95% CI: 0.66–5.29; for lag 0–5, 3.59%, 95% CI: 0.18–7.12). No significant effect was detected between $PM_{2.5}$ and either group of hospitalizations. Effect modification of Saharan dust on the association between hospitalizations and particles was seen for respiratory diseases, with effects of $PM_{2.5-10}$ (14.62% vs. −0.32, $p = 0.006$). Effect modification of Saharan dust was also found for PM_{10} and cerebrovascular diseases (5.04% during dust-affected days vs. 0.90% during dust-free days, $p = 0.143$).</td>
<td></td>
</tr>
<tr>
<td>Neophytou et al., 2013 [39]</td>
<td>Cyprus</td>
<td>Time-series analysis</td>
<td>NS</td>
<td>National statistics</td>
<td>Jan 2004–Dec 2007</td>
<td>All-cause mortality and cardiovascular/respiratory mortality</td>
<td>A 2.43% (95% CI: 0.53–4.37) increase in daily cardiovascular mortality was associated with each 10 mg/m3 increase in PM_{10} concentrations on dust days. Associations for total (0.13% increase, 95% CI: 1.03–1.30) and respiratory mortality (0.79% decrease, 95% CI: 4.69–3.28) on dust days, and all PM_{10} and mortality associations on non-dust days, were not significant.</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Location</td>
<td>Study design</td>
<td>Population</td>
<td>Health data source</td>
<td>Period of observation</td>
<td>Outcome</td>
<td>PM fraction</td>
<td>Results</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Perez et al.,</td>
<td>Barcelona,</td>
<td>time stratified</td>
<td>~1.8 million</td>
<td>local health registry</td>
<td>Mar 2003–Dec 2007</td>
<td>all-cause-mortality and cardiovascular/respiratory mortality</td>
<td>PM_{10}</td>
<td>During non-Saharan dust days, statistically significant effects of PM_{10–2.5} for cardiovascular (OR = 1.033, 95% CI: 1.006–1.060) and respiratory mortality (OR = 1.044, 95% CI: 1.001–1.089) were seen. During Saharan dust days the strongest cardiovascular effects were found for the same fraction (OR = 1.085, 95% CI: 1.017–1.158), with an indication of effect modification (p = 0.111).</td>
</tr>
<tr>
<td>2012 [16]</td>
<td>Spain</td>
<td>case-cross-over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM_{10}</td>
<td></td>
</tr>
<tr>
<td>Diaz et al.,</td>
<td>Madrid,</td>
<td>time stratified</td>
<td>NS</td>
<td>local health registry</td>
<td>Jan 2003–Dec 2005</td>
<td>daily cause-specific mortality</td>
<td>PM_{10}</td>
<td>The rises in mortality per 10 μg/m³ PM_{10} concentration were always largely correlated with Saharan dust days. No effects were found for cerebrovascular causes.</td>
</tr>
<tr>
<td>2012 [37]</td>
<td>Spain</td>
<td>case-cross-over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM_{10}</td>
<td>ildecause-specific mortality</td>
</tr>
<tr>
<td>Tobias et al.,</td>
<td>Madrid,</td>
<td>time stratified</td>
<td>NS</td>
<td>local mortality registry</td>
<td>Jan 2003–Dec 2005</td>
<td>total mortality</td>
<td>PM_{10}</td>
<td>During Saharan dust days, an increase of 10 mg/m³ in PM_{10} raised total mortality by 2.8% compared with 0.6% during non-dust days (p = 0.0165). This effect was not seen for PM_{2.5}.</td>
</tr>
<tr>
<td>2011 [22]</td>
<td>Spain</td>
<td>case-cross-over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM_{10}</td>
<td></td>
</tr>
<tr>
<td>Mallone et al.,</td>
<td>Rome,</td>
<td>time stratified</td>
<td>80,423 adults aged ≥ 35 years</td>
<td>local mortality registry</td>
<td>Feb 2001–Dec 2004</td>
<td>all-cause-mortality and cardiovascular/respiratory mortality</td>
<td>PM_{10}</td>
<td>Associations of PM_{2.5–10} with cardiac mortality were stronger on Saharan dust days (9.73%, 95% CI: 4.25–15.49) than on dust-free days (0.86%, 95% CI: -2.47–4.31, p = 0.005). Saharan dust days also modified the associations between PM_{10} and cardiac mortality (a 9.55% increase; 95% CI: 3.81–15.61, vs. dust-free days: 2.09%, 95% CI: -0.76–5.02, p = 0.02).</td>
</tr>
<tr>
<td>2011 [20]</td>
<td>Italy</td>
<td>case-cross-over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM_{10}</td>
<td></td>
</tr>
<tr>
<td>Samoli et al.,</td>
<td>Athens,</td>
<td>poisson regression</td>
<td>> 4 million</td>
<td>national statistics</td>
<td>2001–2006</td>
<td>all-cause-mortality and cardiovascular/respiratory mortality</td>
<td>PM_{10}</td>
<td>A 10 μg/m³ increase in PM_{10} was associated with a 0.71% (95% CI: 0.42–0.99) increase in all deaths. The main effect of desert dust days and its interaction with PM_{10} concentrations were significant in all cases except for respiratory mortality and cardiovascular mortality among those > 75 years of age. The negative interaction pointed towards lower particle effects on mortality during dust events.</td>
</tr>
<tr>
<td>2011 [18]</td>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM_{10}</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Location</td>
<td>Study Design</td>
<td>Population</td>
<td>Registry</td>
<td>Time Period</td>
<td>Outcome Measures</td>
<td>PM<sub>10</sub> Concentration</td>
<td>PM<sub>2.5</sub> Concentration</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Zauli Sajani et al., 2011 [40]</td>
<td>Emilia-Romagna, Italy</td>
<td>time stratified case-crossover</td>
<td>~1.2 million</td>
<td>regional mortality registry</td>
<td>Aug 2002–Dec 2006</td>
<td>all-cause mortality and cardiovascular/respiratory mortality</td>
<td>PM<sub>10</sub></td>
<td></td>
</tr>
<tr>
<td>Jimenez et al., 2010 [21]</td>
<td>Madrid, Spain</td>
<td>longitudinal, ecological, time-series</td>
<td>Subjects aged > 75 years</td>
<td>local mortality registry</td>
<td>Jan 2003–Dec 2005</td>
<td>all-cause mortality and cardiovascular/respiratory mortality</td>
<td>PM<sub>10</sub>, PM<sub>10–2.5</sub>, PM<sub>2.5</sub></td>
<td></td>
</tr>
<tr>
<td>Perez et al., 2008 [15]</td>
<td>Barcelona, Spain</td>
<td>time stratified case-crossover</td>
<td>~1.8 million</td>
<td>local mortality registry</td>
<td>Mar 2003–Dec 2004</td>
<td>all-cause mortality and cardiovascular/respiratory mortality</td>
<td>PM<sub>10–2.5</sub>, PM<sub>2.5</sub></td>
<td></td>
</tr>
</tbody>
</table>

Respiratory mortality increased by 22.0% (95% CI: 4.0–43.1) on the Saharan dust day in the whole year model and by 33.9% (95% CI: 8.4–65.4) in the hot season model. The effects substantially attenuated for natural and cardiovascular mortality with ORs of 1.042 (95% CI: 0.992–1.095) and 1.043 (95% CI: 0.969–1.122), respectively.

On Saharan dust days, a significant statistical association was detected between PM₁₀ (though not PM_{2.5} or PM_{10–2.5}) and mortality for all 3 causes analyzed, with RRs statistically similar to those reported for PM_{2.5}.

A daily increase of 10 μg/m³ in PM_{10–2.5} increased daily mortality by 8.4% (95% CI: 1.5–15.8) compared with 1.4% (–0.8–3.4%) during non-Saharan dust days (p = 0.05). In contrast, there was no increased risk of daily mortality for PM_{2.5} during Saharan dust days.

For every 10 μg/m³ increase in daily average PM₁₀ concentrations, there was a 0.9% (95% CI: 0.6–1.2) increase in all-cause admissions and a 1.2% (95% CI: –0.0–2.4) increase in cardiovascular admissions. All-cause and cardiovascular admissions were 4.8% (95% CI: 0.7–9.0) and 10.4% (95% CI: –4.7–27.9) higher on dust storm days, respectively.

CI – confidence interval; ER – emergency room; NS – not stated; OR – odds ratio; PM – particulate matter.
increase in respiratory-cause admissions, associated with fractions corresponding to PM_{10} and PM_{10-2.5}. Alessandri-ni et al. [10] saw an effect modification of Saharan dust on the association between hospitalizations and particles for respiratory diseases and cerebrovascular diseases. Perez et al. [16], Mallone et al. [20], and Middleton et al. [19] in particular detected an excess risk of cardiovascular events on Saharan dust days compared to non-dust days. In a study of children admitted with asthma in Guadeloupe, Caribbean [9], there were excess risk percentages for visits related to asthma on days with dust compared to days without dust (9.1% [95% CI: 7.1–11.1] vs. 1.1% [95% CI: 25.9–4.6] for PM_{10}, and 4.5% [95% CI 2.5–6.5] vs. 1.6% [95% CI 21.1–3.4] for PM_{2.5-10}). However, these results were not consistent, with Samoli et al. [18] detecting a negative correlation between particle effects and mortality during dust events. Nevertheless, most of the available evidence appears to suggest that PM composed of Saharan dust contributes to excess adverse health outcomes.

The third major observation from the collated studies is that particle size has an impact on the observed health effects. Several studies observed significant impacts on all-cause or cause-specific mortality for PM_{10} (but not PM_{2.5} or PM_{10-2.5} [21]) and PM_{10-2.5} (but not PM_{2.5} [15,22]). Coarser particle sizes appear to have a greater impact on mortality than smaller particle sizes. However, not all studies have reported the same pattern of findings. In individuals living in Gran Canaria Island, Spain, elevated Saharan dust levels did not exacerbate allergies in adult and elderly patients, as assessed by the number of ER admissions, medication needs, and pulmonary function [14].

CONCLUSIONS
There are several theories on the mechanism underlying the impact of Saharan dust on human health. As a component of PM, dust particles may be inhaled. Accordingly, the particle size has been proposed as a determinant of the potential of Saharan dust to cause health-related damage. Particles > 10 μm are generally not respirable, so the deleterious impacts of very coarse particles are likely to be external, for example, by irritating the skin and eyes. Particles < 10 μm (PM_{10}) in diameter, however, can be inhaled [4] and are, therefore, associated with respiratory disorders, given their direct contact with the upper respiratory tract. The smallest particles may enter the lower respiratory tract and eventually the bloodstream, thereby exerting lower respiratory and cardiovascular effects.

Details of the molecular and cellular events underlying the interaction of these particles with physiological systems are scarce. Non-desert dust particulate matter and other air pollutants are known to cause molecular and cellular alterations, for example, aberrant gene expression from exposure to particulate matter in general and anthropogenic pollutants specifically [23–26]. Such testing began at the bench using animal models and is now entering the clinical domain. Understanding how desert dust exposure interacts with specific tissues and cell populations at the molecular level could shed light on other health-damaging effects of dust exposure, deepen our knowledge of dust exposure beyond the effects based on the particle size, and provide opportunities for predictive tests or exposure biomarkers.

An interesting hypothesis is that infectious diseases disseminated through dust dispersion may also be responsible for adverse health effects. One way in which this might occur is that dust inhalation may damage protective mucosae, rendering individuals susceptible to bacterial infection [4]. Microbial populations and anthropogenic pollutants have been shown to travel on dust [3] and may contribute to outbreaks of infectious diseases such as meningitis [27], and some studies support this theory [28,29].

One study compared the atmospheric microbiome on dust-affected and dust-free days by applying modern ge-
nomic techniques to investigate the impact of dust storms on the airborne microbial community [30]. Their results showed that the relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Accordingly, they concluded that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to dust particles [30]. Similarly, recent investigations of the desert dust composition suggest that toxic waste may be transported through the movement of desert dust [31–33]. Given that environmental regulations between countries from which the dust originates and the countries to which it is transported may significantly differ, this may present a fertile area of research, with a significant impact on public policy and air quality standards [20].

An analysis of the microbial content of a Saharan dust event in Italy showed the contamination of local soil with desert dust microorganisms, supporting the hypothesis that dust storms can move microbial communities from their origin to new environments [27]. Accordingly, 2 recent studies have linked infectious disease occurrence, specifically meningitis, to Saharan dust movements. Diokhane et al. [29] conducted a study during winter and spring 2012 in Dakar, Senegal, which is part of the Sahelian zone, also referred to as the “meningitis belt.” The number of meningitis cases was 3-times higher during this period compared to the same season in 2013. Notably, their investigation evidenced higher PM concentrations as well as elevated atmospheric dust loading during the period of increased meningitis cases. Perez Garcia-Pando et al. [34] analyzed wind and dust information alongside seasonal incidences of meningitis in Niger, and reported that these environmental conditions might predict meningitis outbreaks. In contrast, Woringer et al. [28] could not identify any association between epidemic meningitis in the “meningitis belt” and atmospheric dust load.

Finally, Skonieczny et al. [35] recently reconstructed Saharan dust deposition > 240,000 years and in doing so demonstrated that present-day Saharan dust deposition is elevated compared to 5000–11,000 years ago. During that time, decreased dust in Saharan plumes may have contributed to the development of monsoon rains, and the effect of dust may continue to impact on climatic change [35]. An in-depth understanding of Saharan dust deposition, its environmental impact, and its health-related sequelae may not only be relevant but also increasingly urgent as both a public health and environmental concern.

In collating the available evidence in this mini-review, the authors have shown that 1) PM contributes to all-cause and cause-specific mortality and morbidity; 2) the PM arising from Saharan dust contributes to excess all-cause and cause-specific mortality and morbidity; and 3) larger particle sizes may be more harmful than smaller particle sizes. Several associations exist between Saharan dust exposure and adverse health outcomes. As a PM component, Saharan dust is respirable and, as expected [2,3], reportedly increases respiratory hospitalizations in patients with asthma, allergic disorders, and other respiratory diseases [8–11,16,36,37]. The theorized association with cardiovascular illness [4] has been demonstrated in a subset of studies that show an increase in mortality due to cardiovascular causes upon dust exposure [20,21,38]. While the evidence supporting a health impact of Saharan dust exposure is emerging and fairly robust, the mechanisms underlying these associations remain elusive and require further study, perhaps by assessing blood-borne molecules, such as through gene expression or metabolite analyses, on Saharan dust days.

ACKNOWLEDGMENTS
The authors would like to acknowledge Dr. Sunali Wadehra and Wadehra Medical Writing, LLC and Nextgenediting (www.nextgenediting.com) for providing editorial support services.
REFERENCES

33. Garrison VH, Majewski MS, Konde L, Wolf RE, Otto RD, Tsuneoka Y. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air.

