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Abstract
Lipidomics belongs to the family of the so-called omics domains, which, based on modern chemical technologies, strive to explain the biological 
principles of the organism’s functioning. Main biological functions of lipids include energy storage, the formation of cell membranes, and partici-
pation in the transmission of biological signals, and their dysregulation is responsible for the development of pathological states. Thanks to lipid 
profiling, potential biomarkers for disease diagnosis and prognosis can be identified. This paper discusses selected examples of the use of lipidomic 
tests in the diagnosis of the kidney, metabolic and neoplastic diseases based on research papers published over the last few years (since 2016). Only 
works based on the study of human biological material by mass spectrometry methods were taken into account. The examples of lipidomics applica-
tion presented in this publication are only a few of the possibilities of this technique. As potential possibilities have already been discovered, the next 
step for the research community is to work on standardization of the approach to lipidomic research and to develop bioinformatics methods that 
allow efficient processing and analysis of large amounts of data generated in this technique. Int J Occup Med Environ Health. 2022;35(2):111 – 26
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INTRODUCTION
Lipids form a group of compounds defined by physico-
chemical properties – they are not soluble in water (they 
are hydrophobic or amphiphilic) – unlike other classes of 
biomolecules, which are defined by a common structural 
feature [1]. Some of the proposed breakdowns of lipids are 
fatty acids, glycerolipids, glycerophospholipids, sphingo-
lipids, steroids, prenols, sacharolipids, polyketides  [2]. 
The  main biological functions of lipids include energy 
storage, the formation of cell membrane structures, and 
participation in signal transduction [3].
Lipids belong to the  family of the so-called “omics” do-
mains, the  purpose of which is to provide information 

about the current state of the body, as well as to identify 
new biomarkers of exposure to chemical substances, re-
lated to lifestyle (diet), as well as prognostic and diag-
nostic in selected pathological states  [4]. The  concept 
of lipidomic analysis appeared in the  world of science 
at the  beginning of the  21st century. The  first research 
papers published in journals date back to 2001 [5]. Since 
then, a  systematic increase in interest in this field has 
been observed, which translates into the number of ar-
ticles published (Figure 1). Thanks to the development of 
technology, new methodological and technical solutions, 
lipidomics is becoming an attractive branch of metabolo-
mics (Figure 2) [6], which allows learning about cell lipid 
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conditions. Linking the  lipid composition with changes 
in the body enables the identification of metabolic path-
ways. Potential lipid biomarkers can be used in the diag-
nosis and prognosis of diseases [9]. According to a 2018 
report by the  World Health Organization (WHO)  [10] 
(presenting data for 2016) among the 10 most common 
causes of death (causing about 54% of all deaths) are, 
among others diabetes, cardiovascular disease, and some 
types of cancer. The  following studies are presented on 
selected examples, proposing lipid biomarkers, support-
ing the early diagnosis of selected diseases.

METHODS
Scientific articles were searched for within the following 
databases: PubMed and ScienceDirect. For this purpose, 
the following key words were used: “lipids,” “lipidomics,” 
“metabolism,” “biomarkers” and accordingly “kidney dis-
ease,” “cancer” and “diabetes.” During the search operators 
“OR” and “AND” were used. For the  analysis, scientific 
articles published after 2016 were selected. The next step 
was a detailed analysis of the articles and the selection of 
those in which analytical base was mass spectrometry. 
Only works based on the study of human biological mate-
rial were taken into account. At  the end 18 publications 
were selected the results of which are quoted and analyzed 
in this study. The  background for the  entire review was 
developed on the basis of the remaining 24 publications.

profiles, leading to understanding lifestyle changes, or 
in physiological and pathological states of the body [7]. 
The  development of this field is therefore particularly 
important from the  point of view of medicine, care for 
human health, and the need to diagnose adverse changes 
in the body as early as possible. The definition of lipido-
mics, created in 2003 and valid until today, is “the full 
characterization of lipid molecular species and their bi-
ological roles with respect to expression of proteins in-
volved in lipid metabolism and function, including gene 
regulation” [1].

Lipidomic analysis in the diagnosis of diseases
Research in the field of lipidomics is focused on 5 major 
branches (Figure 3)  [8]. Thanks to lipid profiling, it is 
possible to track changes in response to changing envi-
ronmental conditions or the development of pathological 
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Figure 1. Annual number of publications for “lipidomics analysis”  
as searched in January 2021
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criterion to include patients in the study was glomerular 
filtration rate (eGFR) <30 ml/min. The study group con-
sisted of a  total of 200 patients followed for 6 years, of 
whom 79 had progression to end-stage renal disease, and 
in 121 patients without progression, only an eGFR reduc-
tion of less than 25% was observed.
For lipidomic analysis, liquid chromatography was used 
along with mass spectrometry and a  time-of-flight ana-
lyzer (LC-TripleTOF-MS). Using the data obtained from 
the test group, out of 510 initially identified lipids, 49 were 
qualified (after taking into account statistical methods) 
for analysis for the prognostic aspect of the development 
of kidney disease. At  the  metabolite level, the  indepen-
dent predictors of progression that were most accurate in 
all 3 classification methods used (partial least squares-dis-
criminant analysis [PLS-DA], false discovery rate [FDR], 
random forest  [RF]) were diacylglycerols (DAG) (36:0), 
DAG (32:0), and monoacylglycerol (MAG) (16:0). Diacyl
glycerols  (36:0) and DAG (32:0) were associated with 
slower disease progression, while MAG (16:0) was asso-
ciated with faster progression to end-stage renal disease, 
regardless of the  parameters of eGFR and UPCR (urine 
protein creatinine ratio).
Using the ultra-performance liquid chromatography with 
a  high definition mass spectrometry (UPLC-HDMS), 
a different profile of metabolites was proposed by an inter-
national team of scientists from China and the USA [15]. 
The  metabolic profile of the  serum was compared 
in  180  patients with chronic kidney disease (diagnosed 
stages 4–5) and 120 healthy people. Patients with acute 
kidney injury, liver disease, systemic disease as diabetes, 
lupus erythematous, amyloidosis, patients treated with 
immunosuppressants in the last 6 months of chemother-
apy in the last 2 years, and patients undergoing chronic 
dialysis or kidney transplantation were excluded.
To find the best combination of significantly altered con-
centrations of lipid types, several statistical methods were 
used (including principal component analysis [PCA], or-

RESULTS
Chronic kidney disease
Epidemiological studies show that the number of cases of 
kidney disease is constantly increasing in the world, one 
of which – chronic kidney disease (CKD) – is classified as 
a lifestyle disease. World data for 2017 shows 697.5 mil-
lion cases of CKD, resulting in an estimated incidence 
of 9.1% in relation to the  world population. Also, there 
were 1.2 million deaths from chronic kidney disease, and 
a further 1.4 million deaths from cardiovascular disease 
were attributed to renal impairment. In 1990, CKD was 
mentioned as the 17th cause of global deaths, in 2017 it 
was 12th place. Over the years, the mortality rate also in-
creased – from 35.2% to 41.5% [11].
The development of pathological conditions in the  kid-
neys results in a disturbance of the homeostasis, impaired 
blood filtration and consequently storage of toxins and 
metabolic products in the body. This starts an avalanche 
of gradual impairment of the work of subsequent organs. 
Early detection of CKD may lead to early treatment and 
consequently may stop the development of the disease in 
its initial stage (5 are distinguished). In  extreme cases, 
end-stage kidney disease (ESRD) occurs, which requires 
dialysis or kidney transplantation  [12]. Additionally, it 
causes a  great economic burden on the  health system. 
Calculations made by the  team of Elshahat et  al.  [13], 
based on data collected up to 2015 (published in 2020, 
adjusted for inflation), indicate that the  total costs of 
treating chronic kidney disease in mild stages (1–3) 
vary by USD 1600 up to >USD 25 000, and for patients 
with severe stages (4–5), the cost rises to >USD 56 000. 
Treating patients with end-stage kidney disease costs 
>USD 100 000.
Table 1 presents the potential associations of lipids with 
the prognosis for the occurrence of renal failure. In 2016, 
a study [14] was conducted to identify prognostic serum 
lipid metabolites in stages 2 and 3 of chronic kidney dis-
ease to predict disease progression to stage 5. The main 
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stage 2–3, CKD stage 4–5, hemodialysis patients. The con-
centrations of phosphatidylcholines (PC), sphingomyelins 
(SM), and lysophosphatidylcholines (LPC) were deter-
mined by flow injection tandem mass spectrometry (FIA-
MS/MS). Fatty acids (FA) were analyzed as the  corre-
sponding fatty acid methyl esters (FAME) using gas chro-
matography combined with mass spectrometry (GC-MS). 
Two hundred thirty-nine types of lipids have been identi-
fied and 34 of them indicated significant differences be-
tween patients in the CKD stage 2–3 and HD groups and 
29 between the CKD stage 4–5 and HD groups. Except for 
1 case (nonesterified elaidic acid (C18:1ω9t)), a reduction 
in specific lipids was observed in the group of hemodialy-
sis patients. There were no significant differences in LPC 
concentrations between patients in CKD 2-3 and CKDE 
4-5 groups, with 2 exceptions, i.e., LPC (20:3 and 20:4), 

thogonal projections to latent structures discriminant 
analysis  [OPLS-DA], analysis of variance  [ANOVA], 
Mann-Whitney test, FDR). Significantly higher concen-
trations of methylhexadecanoic acid, lysophosphati-
dylcholine LPC (24:1), and 3-octadecadecanoic acid as 
well as significantly lower concentrations of phosphati-
dylcholine PC (20:2/24:1) were strongly correlated with 
the  eGFR and UPCR parameters and were classified by 
the  researchers as the  most significant changes in lipid 
metabolites in patients with CKD. In  2019 an interna-
tional team of scientists [16] presented the results of their 
research, the aim of which was to determine the concen-
tration of lipids in the plasma of patients with CKD and 
patients undergoing hemodialysis (HD).
The study involved 77 people who were divided into 
3  groups according to the  stage of kidney disease: CKD 

Table 1. Candidate for selective biomarkers of chronic kidney disease in articles published after 2016 collected on Pubmed and ScienceDirect in March 2021

Disease and sample Lipids and their concentration* Method Reference Test group Year

Progression to end stage 
kidney disease

serum DAG (36:0) ↓
DAG (32:0) ↓
MAG (16:0) ↑

LC-TripleTOF-MS 14 79 participants with ESRD 
and 121 without progression

2016

Chronic kidney disease

serum methyl hexadecanoic acid ↑
LPC (24:1) ↑
3-oxooctadecanoic acid ↑
PC (20:2/24:1) ↓

UPLC-HDMS 15 300 participants 
(including 120 controls)

2017

plasma LPC (18:2) ↓
LPC (20:3) ↓

FIA-MS/MS
GC-MS

16 77 participants at different stages 
of the disease

2019

plasma saturated C16–C20 free fatty acids ↑ LC-MS 17 214 participants at different stages 
of the disease

2018

serum LPE (18:1) ↑
LPE (20:4) ↑

HPLC-TOF-MS
GC-QqQ/MS

18 60 participants  
(including 30 controls)

2019

DAG – diacylglycerol; FIA-MS/MS – flow injection tandem mass spectrometry; GC-MS – gas chromatography combined with mass spectrometry; GC-QqQ/MS – gas 
chromatography combined with triple quadrupole mass spectrometry; HPLC-TOF-MS – hight-performance liquid chromatography combined with mass spectrometry and 
a time-of-flight analyzer; LC-MS – liquid chromatography with mass spectrometry; LC-TripleTOF-MS – liquid chromatography with mass spectrometry and time-of-flight 
analyzer; LPC – lysophosphatidylcholine; LPE – lysophosphatidylethanolamine; MAG – monoacylglycerol; PC – phosphatidylcholine; UHPLC-HDMS – ultra-performance liquid 
chromatography with a high definition mass spectrometry.
* The levels of potential biomarkers defined as (↓) and (↑) correspondingly represent down- and up-regulation.
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Sera collected from 14 patients in CKD stage 3, 16 patients 
in stage 4, and 30 healthy people were used for the study. 
The collected data were subjected to advanced statistical 
analysis, using, inter alia, PCA analysis, Student’s t-test, 
Mann-Whitney-Wilcoxon test, FDR, p-value and variable 
importance of projection (VIP), selectivity ratio (SR), 
ANOVA, or Fisher’s least significant differences (LSD). 
Significantly statistically reduced concentrations of sever-
al lysophosphatidylcholines: LPC (16:1), LPC (20:3), and 
LPC (20:4) were considered potential markers in CKD 
patients compared to the  healthy group. Additionally, 
a relationship was also observed between the LPC (18:3) 
concentration and eGFR in the CKD group. Taking into 
account disease progression, higher concentrations of ly-
sophosphatidylethanolamines LPE (18:1) and LPE (20:4) 
were considered significant markers in patients with 
stage 3 and 4 CKD compared to the control group.

Cancer
In 2018, the Global Cancer Observatory (GCO) database 
published estimates of global incidence and mortality 
from 36 types of cancer. The list covered 185 countries. 
Figure 4 shows the  case distribution of the  4 deadli-
est neoplasms in 2018, distinguishing between women 
and men  [19]. According to the  estimates of Pilleron 
et  al.  [20] by 2050, only those aged ≥80 will be diag-
nosed with >6.9 million new cases of cancer (which 
will constitute 21.5% of cases in total in all age groups  

the  concentration of which gradually decreased from 
CKD stage 2–3 to HD.
Patients’ health status was assessed after 3 years by ana-
lyzing medical records and/or contacting patients or rela-
tives. There was a  correlation between increased levels 
of lysophosphatidylcholine LPC and a  better prognosis 
for slowing disease progression and increasing survival 
time. Among this group, especially 2 LPC compounds: 
LPC (18:2) and LPC (20:3), after correcting the values for 
albumin concentration, were still statistically significantly 
higher. Also, scientists from the United States published in 
2018 [17] the results of their analyzes on the identification 
of lipid classes are related to changes in acylcarnitine level 
in all stages of CKD. The team hypothesized that there are 
dynamic changes in the quantitative composition of plasma 
lipids in patients at all stages of chronic kidney disease and 
that these changes are related to impaired lipids catabolic 
processes (β-oxidation). The  study included 214  people: 
36 in stage 1 or 2 of CKD, 99 in stage 3, 61 in stage 4, and 
18 in stage 5. In total 517 serum lipids detected in posi-
tive and negative ion modes and finally concentrations of 
330 lipids from 17 different classes were measured using 
liquid chromatography with mass spectrometry (LC-MS). 
The key changes observed were greater amounts of satu-
rated C16-C20 free fatty acids (FFAs) in combination with 
a reduced ratio of long and medium-long acylcarnitines, 
which are a marker of impaired β-oxidation, which may 
contribute to further CKD progression.
In 2019 Polish scientists [18] conducted a study to deter-
mine the metabolic pattern based on which it is possible 
to distinguish healthy patients from those with chronic 
kidney disease and to determine quantitative and qualita-
tive changes in metabolites between stage 3 and 4 of the 
disease. The work uses high-performance liquid chroma-
tography combined with mass spectrometry and a time-
of-flight analyzer (HPLC-TOF-MS) and gas chromatogra-
phy combined with triple quadrupole mass spectrometry 
(GC-QqQ/MS).
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Table 2. Candidate for selective biomarkers of neoplasms in articles published after 2016 collected on Pubmed and ScienceDirect in March 2021

Disease and sample Lipids and their concentration* Method Reference Test group Year

Lung cancer

plasma LPE (18:1) ↑
ePE (40:4) ↑
CE (18:2) ↓
SM (22:0) ↓

ESI-MS 21 346 samples (including 
113 adenocarcinomas, 86 squamous 
cell carcinoma, 147 controls)

2017

serum LPC (18:2) ↓ MALDI-TOF-MS 22 400 samples (including 300 controls) 2017

serum FA (20:4) ↓
FA (22:0) ↓
LPE (20:4) ↑

UHPLC-Q-TOF/MS 23 127 samples (including 63 controls) 2020

plasma TG (50:1) ↑
TG (54:4) ↑
PE (38:3) ↓
PE (18:1p/20:4) ↓
SM (d18:1/20:0) ↓

UHPLC-ESI-MS/MS 24 37 samples (including 20 controls) 2019

Liver cancer

plasma PI (16:0/18:2) ↑
PI (16:0/20:4) ↑
PI (18:0/20:3) ↑
DAG (16:1/18:0) ↑

UHPLC-ESI-MS/MS 24 41 samples (including 20 controls) 2019

Gastric cancer

plasma PC (36:3) ↓
PC (36:4) ↓
LPA (18:2) ↓

UHPLC-ESI-MS/MS 24 40 samples (including 20 controls) 2019

Breast cancer

tissue samples TG (m/z 879.8) ↓
TG (m/z 881.8) ↓
TG (m/z 907.8) ↓
PC (m/z 782.6) ↑
PC (m/z 725.6) ↑
PC (m/z 756.6) ions ↑

FNA combined with 
MALDI-TOF/MS

25 8 samples (in pair tumor  
and normal tissues)

2017

plasma panel of 15 plasma lipid – 4 LPC ↓
6 PC ↑
2 ePC ↑
3 CE species ↓

LC-ESI-MS/MS 26 194 samples (84 with early-stage breast 
cancer and 110 with benign disease)

2016

Cervix cancer

plasma PC (18:1/15:0) ↓
PC (18:2/20:5) ↓
LPC (18:0) ↑
LPC (10:0) ↑

UPLC-MS 27 182 samples (89 with cervical cancer  
and 93 with uterine fibroids)

2016

Prostate cancer

urine (urinary 
exosomes)

LacCer (d18:1/16:0) ↑
PS (18:1/18:1) ↓
PS (18:0/18:2) ↑

LC-MS/MS 28 28 samples (including 13 controls) 2017
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biomarker strategy allowed to define a  panel of lipids 
that are candidate biomarkers for the early detection of 
NSCLC disease – LPE (18:1), phosphatidylethanolamine 
with 1 ether-linked (alkyl or alkenyl) chain PE (40:4), 
cholesteryl ester CE (18:2) and SM (22:0). The limitation 
of this study is the lack of analyzes of samples of benign 
lung tumors, which would be additional confirmation for 
the proposed panel of lipid biomarkers.
In the same year, a team of researchers from Poland [22] 
used matrix-assisted laser desorption/ionization mass 
spectrometry with a  time-of-flight analyzer (MALDI-
TOF-MS) to analyze serum samples from 100 patients 
with early-stage  lung cancer (including 31 cases detect-
ed by screening) and from an age and gender-matched 
group of 300 healthy participants in a lung cancer screen-
ing program to determine tumor-specific lipid profiles. 
The  analysis revealed 209 lipids differentiating tumor 
and control samples. After using statistical tools, (in-
cluding Bonferroni correction) for multiple comparison, 
59  components retained statistically significant differ-
ences. Lysophosphatidylcholine LPC  (18:2), LPC  (18:1), 
and LPC (18:0) concentrations were significantly lower in 
the serum of cancer patients. A complementary approach 
was introduced using LC-MS in samples from 100 cancer 

in the world), which would be an increase of 200% com-
pared to 2018 data. Undoubtedly, early diagnosis could 
inhibit predicting such a  dramatic increase in the  in-
cidence. Table  2 presents selected examples of the  re-
lationship between a  given disease entity and lipids, 
the changes in the concentration of which in the samples 
was observed during the research, thanks to which they 
can probably be used in cancer prognosis.
In 2017 the team of Yu et al. [21] used lipidomics to iden-
tify markers of lung cancer. In the study, plasma samples 
from 199 patients with early-stage  non-small cell lung 
cancer (NSCLC), including 113 adenocarcinomas and 
86  cases of squamous cell carcinoma, were profiled by 
mass spectrometry. The control consisted of 147 plasma 
samples collected from healthy people. In the first stage, 
after the identification of 361 lipids in the samples, those 
for which there was evidence of low clinical usefulness 
were excluded, e.g.,  due to very low concentrations 
(<10 nmol/µl in plasma) or their slight differences be-
tween patients and healthy people (≤10%). After the eval-
uation of the  diagnostic value for the  obtained data 
(i.e., sensitivity ≥80%, specificity ≥50%, receiver operat-
ing characteristic [ROC] ≥80%), no lipid meeting the re-
quired criteria was identified. The  use of a  combined 

Disease and sample Lipids and their concentration* Method Reference Test group Year

Prostate cancer – cont.

tissue linoleic acid ↑ 
arachidonic acid ↑
oleic acid ↑

GC-MS 29 102 samples
(including 50 benign prostatic hyperplasia 
as control)

2021

CE – cholesteryl esters; DAG – diacylglycerol; ePC – ether–linked phosphatidylcholine; ePE – phosphatidylethanolamine (PE) with one ether‑linked (alkyl or alkenyl) chain; 
ESI-MS - electrospray ionisation mass spectrometry; FA – fatty acid; FNA - fine needle aspiration; GC-MS – gas chromatography; LC-ESI-MS/MS – liquid chromatography with 
tandem triple quadrupole mass spectrometry with electrospray ionization; LC-MS/MS - liquid chromatography with tandem mass spectrometry; LecCer – lactosylceramide; 
LPA – lysophosphatidic acid; LPC – lysophosphatidylcholine; LPE – lysophosphatidylethanolamine; MALDI-TOF-MS – matrix-assisted laser desorption/ionization mass 
spectrometry with time-of-flight analyzer; PC – phosphatidylcholine; PE – phosphatidylethanolamine; PI – phosphatidylinositol; PS – phosphatidylserine; SM – sphingomyelin;  
TG – triacylglycerol; UHPLC-ESI-MS/MS – ultra-efficient liquid chromatography with electrospray ionization and tandem mass spectrometry; UHPLC-Q-TOF/MS – ultra-high 
performance liquid chromatography in combination with quadrupole mass spectrometry with time-of-flight analyzer; UPLC-MS – ultra-performance mass spectrometry 
liquid chromatography.
* The levels of potential biomarkers defined as (↓) and (↑) correspondingly represent down- and up-regulation.

Table 2. Candidate for selective biomarkers of neoplasms in articles published after 2016 collected on Pubmed and ScienceDirect in March 2021 – cont.



R E V I E W  P A P E R      A. PISARSKA ET AL.

IJOMEH 2022;35(2)118

South Korean researchers [24] analyzed plasma samples 
from 58 cancer patients of various locations (including 
liver, stomach, lung cancer) to determine the differences 
in lipid metabolism between these types of cancer com-
pared to 20 healthy subjects. Only male samples were 
used in the study to exclude possible hormonal effects on 
the regulation of blood lipid metabolite levels. The analy-
sis was performed using ultra-efficient liquid chroma-
tography with electrospray ionization and tandem mass 
spectrometry (UHPLC-ESI-MS/MS). The use of non-
targeted lipidomics allowed to identify of 335 lipids, 
among which 50 were selected, present in a  concentra-
tion 2 times higher (p <0.01) in at least one of the tumors 
as compared to the control. The number of lipids consid-
ered significant in the 3 types of cancer was 8, in 2 types 
it was already 15.
Further analysis allowed for the identification and selec-
tion of lipids specific for each tumor:

	– liver: phosphatidylinositoles PI (16:0/18:2), PI (16:0/ 
20:4), PI (18:0/20:3) and diacylglycerol DAG (16:1/18:0);

	– stomach: phosphatidylcholines PC (36:3) and PC (36:4) 
and lysophosphatidic acid LPA (18:2);

	– lungs: triacylglyceroles TG (50:1) and TG (54:4), phos-
phatidylethanoloamines PE (38:3) and PE (18:1p/20:4) 
and sphingomyelin SM (d18:1/20:0).

Researchers in Taiwan  [25] proposed a  complemen-
tary cytology test technique to improve the accuracy of 
breast cancer diagnoses by detecting lipid biomarkers. 
The study used tissues collected during a fine needle as-
piration  (FNA), from which the  lipid fraction was then 
extracted and characterized by mass spectrometry using 
the  MALDI-TOF technique. Tissue samples were col-
lected during surgical operations in pairs – tumor and 
normal tissue. To avoid interference from heme (m/z 616) 
that is released from hemoglobin in tissue samples 
during the  biopsy, the  molecular profile was narrowed 
down to the range of 700–1000 Da. Very high intensity 
of TG ion signals (m/z 879.8, m/z 881.8, and m/z 907.8) 

patients and 100 controls, confirming the previously ob-
tained results.
Based on the collected data, it was found that satisfac-
tory results to which it is possible to distinguish sick 
people from healthy people are obtained based on 
the  concentration of LPC alone (18:2). The  MALDI-
TOF-MS used in the  above-mentioned study made it 
possible to detect tumor-specific serum lipid profiles, 
but a  direct identification of all their types was not 
possible due to the  relatively low mass resolution in 
the technique used.
Lung cancer biomarkers were also investigated by 
the team of Noreldeen et al. [23] using non-targeted lipi-
domic profiling based on ultra-high performance liquid 
chromatography in combination with quadrupole mass 
spectrometry with a time-of-flight analyzer (UHPLC-Q-
TOF/MS). A  study was conducted to define more than 
1 lipid metabolite in serum samples of non-small cell lung 
cancer patients. A total of 127 women was participating 
in the  study, and 63 of them were in control. The  total 
number of lipid ions detected was 276 and 260 in negative 
and positive mode, respectively. After taking into account 
statistical methods (including PCA, PLS-DA, Mann-
Whitney U test), a total of 79 lipid ions showed statisti-
cally significant differences between women diagnosed 
with lung cancer and controls. The data indicated that in 
serum of non-smoking women with non-small cell-lung 
cancer 12 individuals is promising biomarkers, especially 
in the  metabolism of fatty acids and lysophosphatidyl-
ethanolamines  – FA (20:4), FA (22:0), and LPE (20:4). 
The  concentration of FA (20:4) was always lower, while 
FA (20:0) and LPE (20:4) showed always higher levels in 
patients with early-stage lung cancer than in the control 
group. The authors suggest that the combined analysis of 
the concentrations of the 3 metabolites mentioned may 
serve as a sensitive and specific biomarker to distinguish 
NSCLC patients from healthy individuals (also to patients 
with early-stage cancer).
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tumors studied (including hyperplasia, fibroadenoma, 
cysts, and other unspecified changes), low race differen-
tiation (>90% were Caucasian), and the inability to corre-
late changes in potential lipid biomarkers with the size of 
tumors (due to the lack of information about their size).
Given the  steadily increasing number of cervical cancer 
cases in developing countries, an international team led by 
Yin et al. [27] conducted an ultra-performance mass spec-
trometry liquid chromatography (UPLC-MS) non-targeted 
analysis of plasma samples from 89 patients diagnosed 
with cervical cancer (SCC) and 93 controls from patients 
with uterine fibroids (UF). Using the multivariate statistical 
analysis of PLS-DA, 10 lipid metabolites with significantly 
different levels of expression were selected between patients 
with SCC and UF. Using an area under the  curve (AUC) 
ratio ≥0.75, 4 potential tumor biomarkers were selected – 
phosphatidylcholines PC (18:2/20:5) and PC (18:1/15:0), 
lysophosphatidylcholines LPC (10:0) and LPC (18:0).
To further validate the  results obtained with the  chro-
matographic method, the  concentrations of phosphati-
dylcholine and lysophosphatidylcholine in the plasma of 
patients with SCC and UF were tested with ELISA tests. 
Analogous differences were obtained – the concentration 
of PC was significantly lower in the serum of patients with 
cervical cancer compared to the controls, the relationship 
was reversed in the case of LPC.
The obtained results suggest that changes in the concen-
tration of selected lipids can be used as potential bio-
markers for the  diagnosis of cervical cancer. The  best 
values of sensitivity, specificity, and AUC were achieved 
considering all 4 metabolites simultaneously. Similar in-
cidence statistics are represented by cervical cancer in 
women and prostate cancer in men.
A Scandinavian team of scientists has been looking for 
potential biomarkers in prostate cancer [28]. In a study 
conducted on 28 samples (including 13 from healthy 
subjects and 15 diagnosed with prostate cancer) by 
liquid chromatography with tandem mass spectrometry 

– was detected in the area of tissue not affected by neo-
plastic lesions, and the reverse trend of TG ion signals was 
found in the  area of neoplastic tissue. In  contrast, very 
strong phosphatidylcholines PC ion signals (m/z 782.6, 
m/z 725.6, and m/z 756.6) were detected in the area of 
neoplastic tissue and low intensities in unchanged con-
trol tissues. Lipid biomarkers, proposed in this study 
were identified in intraoperatively harvested breast tis-
sues. The idea behind this study was to develop a strategy 
to support biopsy by identifying molecular biomarkers 
during initial diagnosis.
A joint team of scientists from China and the  USA had 
a different approach to the use of lipidomic tests related 
to breast cancer diagnosis [26]. A study was carried out 
to identify a lipid panel that could distinguish early-stage 
breast cancer from benign lesions and serve as poten-
tial biomarkers in the diagnosis of breast cancer. A total 
of 194 plasma samples from 84 women with early-stage 
breast cancer (stage 0–II) and 110 patients with benign 
tumors were analyzed using tandem triple quadrupole 
mass spectrometry with electrospray ionization (LC-
ESI-MS/MS). From the initial number of 367 lipids, after 
the  introduction of restrictions on, inter alia, the  mini-
mum concentration in the  samples was reduced to 191. 
Then, after taking into account the statistical significance 
and the  Student’s t-test, a  total of 15 lipids (lysophos-
phatidylcholines LPC (18:3), LPC (20:2), LPC (20:1), 
LPC  (20:0), cholesteryl esters C (19:1) CE, C (19:0) CE, 
C (20:0) CE, phosphatidylcholines PC (32:1), PC (34:4), 
PC (38:3), PC (40:5), PC (40:3), PC (44:11), ether-linked 
phosphatidylcholine PC (32:2), ePC (38:3)) have been 
identified as potential biomarkers to help diagnose breast 
cancer.
When using binary logistic regression to build a predictive 
model, it was found that single groups of lipids did not give 
good diagnostic results and it was necessary to consider 
all 15 lipids simultaneously. The limitations of this study 
consisted in the  large diversity among the benign breast 
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logical preparations in lipidomics. In this type of material, 
the  molecular changes associated with cancer develop-
ment can be followed similarly to fresh tissue, while re-
ducing the challenges of sample availability and storage.

Metabolic diseases
The term “metabolic disease” defines any disorders that 
cause disturbances in several biochemical processes 
taking place in the  body and the  accompanying energy 
transformations [30]. There is a significant level of error 
tolerance in metabolic activities  – the  disease will only 
occur when the  critical enzyme is turned off and there 
is no competitor to it that could participate in modify-
ing the same molecule [31]. Diabetes is one of the most 
common metabolic diseases today.
Diabetes mellitus is characterized by chronic hyperglyce-
mia with disturbances in carbohydrate, fat, and protein 
metabolism resulting from a  defect in insulin secretion 
and/or function. Chronic hyperglycemia is associated 
with damage, dysfunction, and even failure of many 
organs, in particular, the  eyes, kidneys, nerves, heart, 
and blood vessels  [32,33]. According to a  WHO report, 
in 1980–2014 the number of people suffering from dia-
betes increased from 108 to 422 million [34]. The World 
Diabetes Federation predicts that the incidence will reach 
700 million by 2045 [35]. The WHO classification of dia-
betes mellitus distinguishes 3 main types of diabetes: 
type 1, type 2 and gestational diabetes, as well as other 
specific types of diabetes.
Type 2 diabetes accounts for 90–95% of all diagnosed dia-
betes cases. The risk factor of type 2 diabetes is obesity, 
smoking, unhealthy diet, lack of exercise, a genetic burden. 
In the early stages of the disease, no insulin is needed, and 
there are more options for treatment than for type 1, such 
as the use of drugs, proper diet, and exercise [36].
In 2019, a group of scientists led by Dall et al. [37] pre-
sented a  breakdown of the  costs incurred as a  result of 
health care (USD 302 billion) and reduced professional 

(LC-MS/MS), 107 lipids were identified and quantified 
in urine exosome samples. To verify the  repeatability 
of the  method, 2 samples were taken (in 2 consecutive 
days), tested twice from healthy people. The  samples 
taken showed slight quantitative differences (day-to-day 
variation) mainly within sphingomyelins and glycosphin-
golipids. Due to the limitations resulting from the size of 
the samples, the analysis of 36 lipids based on their con-
centration in urine exosomes was focused on, thanks 
to which 9 metabolites differing significantly between 
the compared groups were selected.
Statistically significant differences were shown for lacto-
sylceramide (LacCer) (d18:1/16:0), phosphatidylserines 
PS (18:1/18:1) and PS (16:0/18:1). The achieved sensitiv-
ity oscillated between 67–53–33%, respectively, which 
means unsatisfactory diagnostic efficiency of individual 
lipids. Nevertheless, promising results were obtained by 
analyzing the combination of the lipids mentioned based 
on mutual ratios  – LacCer (d18:1/16:0):PS (18:1/18:1) 
and PS (18:0/18:2):PS (18:1/18:1). By creating 2 pairs of 
metabolites, a sensitivity of 93% and a specificity of 100% 
were obtained.
In a  study published in 2021, Polish scientists  [29] con-
firmed that in the case of prostate cancer, changes in fatty 
acid concentrations were observed. Non-targeted lipido-
mic analysis by gas chromatography coupled with mass 
spectrometry (GC-MS) were used. Formalin-fixed, par-
affin-embedded (FFPE) tissue samples from 52 patients 
were used. Benign prostatic hyperplasia samples (N = 50) 
were used as control. Finally, a set of 20 metabolites was 
obtained and used for statistical analysis. Of these, 11 were 
selected using one-dimensional statistical analysis. Ulti-
mately, the  application of multivariate statistics allowed 
to distinguish 3 metabolites of linoleic acid, arachidonic 
acid and oleic acid as the most important for studied sam-
ples. An increased level of those fatty acids was observed 
in the prostate cancer samples. One of the important as-
pects of the proposed work is the use of samples of histo-
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In 2016, a group of scientists from Spain [38] conducted 
a  study involving 64 people classified into 4 groups in 
terms of body mass index (BMI) and the risk of develop-
ing type 2 diabetes (determined based on fasting plasma 
glucose and insulin resistance). Forty-five women and 
19 men participated in the study, but no significant influ-
ence of gender on the results was noticed. AbsolutelDQ® 
180 Kit, liquid chromatography coupled with LC-MS/MS, 

activity (USD 102 billion) related to diabetes, based on 
the example of the United States. The total annual burden 
of USD 404 billion translates into an additional financial 
burden of an average of USD 1240 per American. These 
calculations clearly show the enormous scale of the prob-
lem, both from the medical and economic point of view, 
to be faced. Table 3 presents the potential associations of 
lipids with prognosis for diabetes.

Table 3. Candidate for selective biomarkers of diabetes mellitus in articles published after 2016 collected on Pubmed and ScienceDirect in March 2021

Disease and sample Lipids and their concentration* Method Reference Test group Year

Prediabetes and obesity

serum SM (18:0) in prediabetes ↑
LPC (17:0) ↓
LPC (18:1) ↓
LPC (18:2) correlates with BMI ↓

LC- and FIA and ESI-MS/MS 38 64 participants 2016

Type 2 diabetes risk

serum ratio LPC (18:2):LPE (18:2) ↑
phospholipid precursors
(glycerol-2- and 3-phosphates) ↓
LPE (18:2) ↓

GC-TOF-MS and LC-TOF-MS 39 75 participants  
(13-year follow-up)

2019

plasma 5 biomarkers including
LPC (18:1) ↓

UPLC-QTOF-MS 41 108 participants  
(10-years follow-up)

2017

Hyperlipidemia 
associated with  
type 2 diabetes

plasma 13 glycerophospholipids – 11↑/2↓
11 sphingolipids ↑
9 glycerolipids – 6↑/3↓
3 prenol lipids ↑
1 saccharolipid ↑

UPLC-QTOF-MS 42 79 participants (36 – patients 
with hyperlipidemia associated 
with type 2 diabetes; 43 controls)

2021

10 glycerophospholipids 8↑/ 2↓
7 sphingolipids ↑
3 prenol lipids ↑
2 glycerolipids ↓

77 participants (36 – patients 
with hyperlipidemia associated 
with type 2 diabetes; 41 patients 
with type 2 diabetes)

ESI-MS/MS – electrospray ionization tandem mass spectrometry; FIA-MS/MS – tandem mass spectrometry with flow injection analysis; GC-TOF-MS – gas chromatography 
combined with a time-of-flight analyzer and mass spectrometer; LC-MS/MS – liquid chromatography coupled with tandem mass spectrometry; LC-TOF-MS – liquid 
chromatography combined with a time-of-flight analyzer and mass spectrometer; LPC – lysophosphatidylcholine; LPE – lysophosphatidylethanolamine; SM – sphingomyelin; 
UPLC-QTOF-MS – quadrupole time-of-flight mass spectrometry analyzer.
* The levels of potential biomarkers defined as (↓) and (↑) correspondingly represent down- and up-regulation.
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of which 252 were identified and classified. Before di-
agnosis, the group who later developed type 2 diabetes 
had a  lower concentration of LPE (18:2), a higher ratio 
of LPC concentrations (18:2) to LPE (18:2), and lower 
concentrations of phospholipid precursors (glycerol-2- 
and 3-phosphates), compared to the group with normal 
glucose tolerance.
Similar observations were made in the 2012 study [40], 
where a reduced LPC (18:2) was the marker of both pre-
diabetes and type 2 diabetes in the 2 KORA and EPIC co-
horts, which included Caucasians.
The creation of a  panel of biomarkers for the  develop-
ment of type 2 diabetes was also aimed at a study pub-
lished in 2017  [41] in which 108 subjects with estab-
lished pre-diabetes were followed for 10 years for either 
developed diabetes or regression to normal glucose 
regulation. Non-targeted analysis of fasting plasma sam-
ples using UPLC-QTOF-MS was used. Among the  sub-
jects, 68 subjects remained pre-diabetic, 20 subjects had 
a  regression to the  state of normal glucose tolerance, 
and the  same number of subjects developed diabetes. 
At  baseline, there were no significant differences (in-
cluding age, gender, body mass index, general health, 
and blood glucose levels) between study participants. 
In  the  final stage of the  study, differences in 3 param-
eters were observed: fasting glucose concentration after 
2 h in the test of glucose load and the concentration of 
glycosylated hemoglobin (HbA1c). Based on the obtained 
data, 23 and 22 compounds were selected, respectively, 
involved in biochemical metabolic pathways of high sta-
tistical significance related to regression to normal glu-
cose tolerance or the development of diabetes mellitus. 
The key to this study was the selection and combination 
of specific biomarkers to establish a non-invasive and ac-
curate method of predicting prognosis before developing 
diabetes.
After taking into account the  statistical analysis, 5 bio-
markers were selected, including amino acid and lipid 

and tandem mass spectrometry with flow injection anal-
ysis (FIA-MS/MS) were used in the  work. The  remain-
ing metabolites (beyond the  detectability of the  Abso-
lutelDQ® 180 Kit) were quantified by electrospray ioniza-
tion tandem mass spectrometry (ESI-MS/MS).
After introducing statistical limitations (metabolites be- 
low the  quantification limit set at 25% and with high 
analytical variability in relation to replicates, >25%, 
were rejected), 246 metabolites were taken into account 
for further analysis. The  altered concentrations of the 
3 lysophosphaditylcholine, LPC (17:0), LPC (18:1), and 
LPC  (18:2), were strongly negatively correlated with 
BMI, and thus these compounds are the  specific me-
tabolites associated with morbid obesity but not with 
prediabetes. Higher level of sphingomyelin SM (18:0) 
and lower of SM (18:1) in prediabetic patients were con-
firmed to be candidate for the selective markers of pre-
diabetes. However, increased concentration of several 
forms of ceramides (C17, d18:1/18:0) and dihydrocer-
amides (C20:0, C22:0, C24:1) were selected as putative 
metabolic markers of obesity and pre-diabetes. Selected 
metabolites analyzed together as 1 complex potential 
biomarker achieved an error in the correct classification 
of people >53%. By considering obesity and pre-diabetes 
separately, predictability improved significantly, espe-
cially in morbid obesity.
Other potential biomarkers were proposed in 2019 [39] 
based on a  13-year prospective cohort study in black 
women in southern Africa with normal glucose toler-
ance. Ultimately, 75 women participated in the  study, 
20 of whom developed type 2 diabetes, 27 had impaired 
glucose tolerance, and 28 were still normal glucose tol-
erant. Metabolic analyzes were performed using gas 
and liquid chromatography combined with a  time-of-
flight analyzer and mass spectrometer (GC-TOF-MS 
and LC-TOF-MS in positive and negative ion mode). 
The combination of these 2 techniques allowed the de-
tection of >1000 putative metabolites in serum samples, 
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mutual relations can contribute to the  identification of 
potential disease biomarkers. Despite the challenges that 
undoubtedly include an individual course of the  dis-
ease, a huge variety of lipid compounds present in body 
fluids, or laborious preparation of samples preceding 
the analysis process, advances in the field of lipidomics 
open the door to more accurate and precise diagnosis of 
diseases.

CONCLUSIONS
Despite being a young technique, lipidomics is a powerful 
tool in biomedical sciences. Its main advantage is show-
ing the mechanisms responsible for pathological condi-
tions in the body, which results from the very nature of 
this field  – comprehensive analysis (identification and 
quantification) of hundreds of types of lipids. However, 
like any emerging field, lipidomics has barriers that sci-
entists around the  world are just learning to overcome. 
They include, among others the  amount and complex-
ity of known lipids, the difficulty of applying a uniform 
preparation to such a numerous group of compounds that 
differ in terms of physicochemical properties, or the need 
to implement computational bioinformatics. The answers 
to these needs are numerous initiatives, such as the Lip-
idMaps, LipidBlast, LipidBank platforms containing data 
on lipids (e.g.,  their structures or properties) and orga-
nizations associating scientists such as the International 
Lipidomics Society (ILS), whose aim is to promote lipido-
mics and global cooperation for the development of this 
technique.
The examples of lipidomics application presented in this 
publication are only a few of the possibilities of this tech-
nique. As potential possibilities have already been discov-
ered, the next step for the research community is to work 
on standardization of the approach to lipidomic research 
and to develop bioinformatics methods that allow ef-
ficient processing and analysis of large amounts of data 
generated in this technique.

metabolites, the  combination of which can be used to 
predict the development of diabetes – isovaleric aldehyde, 
linoleic acid, LPC (18:1), 2-pyrroloylglycine, dityrosine, 
and 20-hydroxy-leukotriene E4, LPC (20:4), 5-methoxy-
tryptamine, endomorphine-1, LPC (20:3) as markers of 
return to normal glucose tolerance.
Scientists from the University of Zhengzhou (China) [42] 
used non-targeted lipidomic to study the  differences in 
lipid profiles between 3 groups:

	– patients with hyperlipidemia associated with type 2 
diabetes (T2D HL) (N = 36),

	– patients with type 2 diabetes – T2D (N = 41),
	– healthy people (N = 43).

For this purpose, ultra-performance liquid chromatog-
raphy was used in conjunction with a quadrupole time-
of-flight mass spectrometry analyzer (UPLC-QTOF/
MS) for plasma analysis. While processing the  results, 
the PCA analysis and the OPLS-DA analysis were used. 
Compared with the healthy control group, 37 lipids were 
significantly altered in the T2D HL group, and when com-
pared with the  T2D group, 22 lipids were significantly 
altered in the T2D HL group. Of all the  lipid categories 
detected, which included sphingolipids, glycerolipids, 
glycerophospholipids, prenol lipids and the  largest pro-
portion in both groups accounted for sphingolipids and 
glycerophospholipids. In  the  T2D HL group compared 
to healthy controls 32 lipids showed higher concentra-
tion and only 3 glycerolipids and 2 glycerophospholipids 
showed lower concentration. Similarly, in T2D HL group 
compared to T2D group, 18 lipids showed higher concen-
tration, 2  glycerolipids and 2 glycerophospholipids had 
lower concentration. The  identified lipids may provide 
a  deeper understanding of lipid metabolic changes and 
the relevant metabolic pathway of type 2 diabetes-relat-
ed hyperlipidemia, which may be useful for improving 
the risk prediction of this condition.
The above summaries (Tables 1–3) show how the moni-
toring of the concentrations of individual lipids or their 
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