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Abstract
Background: Organophosphates are cholinesterase (ChE) inhibitors with worldwide use as insecticides. Stress response, 
evidenced by a dramatic and relatively long-lasting (several hours) rise in the plasma glucocorticoid concentration is an 
integral element of the organophosphate (OP) poisoning symptomatology. In rodents, corticosterone (CORT) is the main 
glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentra-
tion (the CORT response) and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, 
in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE 
inhibition. Metyrapone (MET) [2-methyl-1,2-di(pyridin-3-yl)propan-1-one] blocks  CORT synthesis by inhibiting ste-
roid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP) [2-chloro-1-(2,4-dichlorophenyl)
ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. Material and Methods: The pur-
pose of the present work was to compare the CVP-induced effects – the rise of the plasma CORT concentration and the 
reduction in ChE activity – in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 
and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was 
given two hours before CVP. Conclusion: The following was observed in the MET-treated rats: i) no rise in plasma CORT 
concentration after the CVP administration, ii) a reduced inhibition and a faster restitution of blood and brain ChE activi-
ties. The results suggest that MET treatment may confer significant protection against at least some effects of OP poison-
ing. The likely mechanism of the protective MET action has been discussed.
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INTRODUCTION

The organophosphate (OP) compounds are one of the 
most common pesticides. Their high toxicity combined 
with the mode of use and easy accessibility result in a high 
number of intoxications, especially in developing coun-
tries  [1–3]. Numerous human studies have shown that 

acute as well as repeated exposures to OP may produce 
long-lasting health consequences [4,5]. The basic mecha-
nism of the OP toxic action – in target as well nontarget 
organisms, including man – consists in inhibition of ace-
tylcholinesterase (AChE), an enzyme decomposing acetyl-
choline (ACh). Consequently, excessive ACh supply and 
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were due to the CORT response, i.e. the stressor-induced 
rise of the CORT release from adrenals. An involvement 
of glucocorticoids in the control of AChE activity is also 
suggested by some in vitro studies; they showed a marked 
stimulation of AChE synthesis in P12 cells treated for 6 h 
with CORT [28]. The observations cited above allow one 
to presume that in the  OP intoxication the magnitude 
and the dynamics of the AChE response may be some-
how affected by the CORT response. The existing obser-
vations concerning this issue are scarce and inconsistent; 
some report no effect of adrenalectomy (i.e.  a  surgical 
blockade of CORT synthesis) on the level of the OP-in-
duced AChE inhibition [15,25] whereas in others a slow-
ing of the rate of AChE restitution was noted [29].
The purpose of the present experiment was to find out 
whether and in what way blocking the CORT response 
affects the level of inhibition and the restitution rate 
of ChE activity in blood (plasma and erythrocytes) and 
brain of rats intoxicated with an  OP insecticide. The 
insecticide used was chlorfenvinphos [2-Chloro-1-(2,4-
dichlorophenyl) ethenyl] diethyl phosphate)]  –  CVP, 
a  compound used in our earlier studies. Chlorfenvin-
phos is a  direct  ChE inhibitor  [30] and efficient in-
ducer of the  CORT response  [13,31]. Metyrapone 
{[2-methyl-1,2-di(pyridin-3-yl)propan-1-one]  – MET} 
was used for blocking the  CORT response. Metyra-
pone blocks the  CORT synthesis by inhibiting ste-
roid 11β-hydroxylase [32].

MATERIALS AND METHODS

Animals 
Adult male Wistar rats (325–340 g), outbreds, from our In-
stitute’s own breeding facility were used. Two weeks before 
the experiment onset they were transferred to the experi-
mental facility where they were housed in polypropylene 
rat cages, one animal per cage. The temperature (22°C), 
humidity (50–60%) and the light/dark cycle (12/12 h with 

the resulting overstimulation of cholinergically innervated 
brain structures and peripheral effectors is regarded as the 
primary cause of the acute toxicity as well as the long-term 
effects of the OP exposure [6,7]. Functional imbalance in 
neurotransmitter systems triggers adaptive mechanisms. 
The well known adaptation to OP intoxication consists in 
down-regulation of cholinergic receptors  [8,9]. Another 
one is the activation of  AChE synthesis  [10,11]. Those 
adaptive responses restore the balance in the cholinergic 
transmission.
A consistent symptom in OP intoxication is a strong acti-
vation of the hypothalamo-pituitary-adrenal (HPA) axis 
which is evidenced by a  manifold and relatively long-
lasting (up to ten or more hours) increase in the blood 
glucocorticoid concentration  [12,13]. Treatment with 
atropine, a  muscarinic antagonist, prevents this effect, 
thus suggesting that it may be related to the choliner-
gic overstimulation  [14,15]. The rise in glucocorticoid 
concentration in OP intoxication deserves attention for 
several reasons. First, it confirms that OPs are powerful 
chemical stressors. Second, it is known that overproduc-
tion of glucocorticoids may result in morphological and 
functional changes in some brain structures [16,17] which 
allows one to suspect its relationship with at least some 
of the known long-lasting effects of  OP exposure. And 
third, it is likely that glucocorticoids may somehow in-
fluence the adaptations related with the ChE activities. 
The main glucocorticoid in rodents is corticosterone 
(CORT). Blood  CORT concentration rises after expo-
sure to stressors. Numerous animal studies revealed 
marked changes in  AChE activity, mainly in brain, af-
ter exposure to various nonchemical stressors. In some 
cases, however, the observed changes consisted in an in-
crease [11,18–21], whereas in others in a decrease [22–24] 
of AChE activity. No changes were observed in adrenal-
ectomized animals  [18,20,25]. Treatment with  CORT 
also results in changes in AChE activity [20,26,27], which 
suggests that the changes observed in stressed animals 
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before the  CVP injection and was repeated during the 
following four days at approximately the same hour (be-
tween 8:00 and 9:00 a.m.). The CVP doses were selected 
on the basis of data from our earlier studies on the same 
compound [14]. The daily MET dose was established on 
the basis of published reports [33,34], as well as our own 
unpublished observations.

Biochemical analyses
The animals (four per each time point) were 
killed by decapitation at selected time intervals, 
i.e. 3 h, 24 h, 7 days, 14 days and 21 days after the CVP 
administration. (In our earlier studies we  have found 
that at the 3.0 mg/kg b.w CVP i.p. maximum ChE inhibi-
tion occurs about  3  h after the administration and the 
enzyme activity returns to normal level within about 
three weeks time  [12]. The arteriovenous blood  5  ml 
samples were collected into Vacutainers containing an 
anticoagulant (K2EDTA,  10.8  mg). After centrifuging 
(10  min,  1780×g), the plasma was transferred to Ep-
pendorf vials and stored at –20°C until analysis. Eryth-
rocyte 0.1 ml samples were mixed with 3.9 ml of distilled 
water and stored at –20°C until analysis. 
The brains were removed from skulls as quickly as pos-
sible, chilled in ice-cold physiological saline and stored 
at –20°C until analysis.

light on from 6:00 a.m. to 6:00 p.m.) were controlled au-
tomatically. The cages and cage bedding (hardwood shav-
ings) were changed twice a week. Food (Murigran pellets 
from  AGROPOL, Motycz, Poland) and tap water were 
accessible ad libitum. Body weight was measured routine-
ly once a  week. At the beginning of the experiment the 
animals were divided into eight groups, 20 in each group 
(Table 1).
All animal use procedures were approved by the local Bio-
ethical Committee (Medical University of Lodz, Poland, 
Decision No. 33/ŁB370/2007).

Chemicals and administration procedures
Chlorfenvinphos {[2-Chloro-1-(2,4-dichlorophenyl)ethe-
nyl] diethyl phosphate – CVP}, technical grade, was ob-
tained from the manufacturer (ORGANIKA-AZOT, Ja-
worzno, Poland). Metyrapone {[2-methyl-1,2-di(pyridin-
3-yl)propan-1-one] – MET} was purchased from SIGMA. 
In order to obtain the required concentrations, CVP was 
diluted with olive oil and MET was dissolved in physio-
logical saline (SAL). Both substances were administered 
intraperitoneally at 1.0 ml/kg b.w.
Chlorfenvinphos  was administered once at doses of 0.0 
(pure olive oil), 0.5, 1.0 or 3.0 mg/kg b.w. Metyrapone at 
daily doses of 100 mg/kg b.w., or SAL, were administered 
five times. The first  MET injection was performed  2  h 

Table 1. Experimental groups and treatment

Group name
Animals treated 

(n)
Dose 

(mg CVP/kg b.w.) Cotreatment

SAL/0.0 20 0.0 (oil) 5×saline
SAL/0.5 20 0.5 5×saline
SAL/1.0 20 1.0 5×saline
SAL/3.0 20 3.0 5×saline
MET/0.0 20 0.0 (oil) 5×MET
MET/0.5 20 0.5 5×MET
MET/1.0 20 1.0 5×MET
MET/3.0 20 3.0 5×MET
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the highest (3.0  mg/kg)  CVP dose, the rise was almost 
eight-fold as compared to the control (SAL/0.0) group. 
Significant increase in plasma  CORT concentration was 
noted on day 7 (CVP dose 1.0 and 3.0 mg/kg) and day 14 
(CVP dose 1.0 mg/kg). In the group which was given the 
highest  CVP dose, the plasma  CORT concentration on 
day 21 was significantly reduced compared to the control. 
In the MET-treated rats, CVP administration induced no 
clear-cut changes in plasma CORT concentration; a  sig-
nificant increase was noted solely in the MET/3.0 group 
and only at the 24 h time point.
Figures 2, 3 and 4 illustrate the dynamics of the CVP-in-
duced changes in ChE activity in blood (plasma and eryth-
rocytes) and brain of MET-treated and MET-untreated rats.
In the  MET-untreated rats the  CVP administration re-
sulted in a  dose-dependent decrease of the  ChE activ-
ity in all the compartments studied. This effect was most 
pronounced  3  and  24  h after the pesticide administration. 

Serum corticosterone assays 
Concentration of corticosterone in plasma was estimated 
by the use of high performance liquid chromatography 
(HPLC) using betamethasone as an internal standard [35].

Cholinesterase activity determination
Cholinesterase activity in blood, plasma and erythrocytes, 
as well as in the brain was assayed with the modified Ell-
man’s method using the Acetylcholinesterase Multi Re-
agent  96  Well  Kit, Cat. No.  1418-500-K, IKZUS ENVI-
RONMENT, according to the manufacturer’s protocol. 
(Please note that this method is not selective for AChE. 
Acetylcholinesterase is the only cholinesterase present in 
erythrocytes. However, in the rat and other rodents, two 
cholinesterases which can be targeted by an  OP,  AChE 
and butyrylcholinesterase (BuChE), both are present in 
plasma and in the brain  [36]. Therefore, the use of the 
term: “cholinesterase – ChE”, was preferred in the pres-
ent work). Enzyme activity was determined be the use of 
the Multiskan Ascent Thermo Labsystems spectropho-
tometer for microplates and the data was recalculated us-
ing the equations specified in the manual. 

Statistics
Differences were assessed using the Kruskall-Wallis test 
in Dunn’s modification [37]. The trend analysis was per-
formed be the use of Jonckheere’s test  [38]. The differ-
ences were regarded as significant when the probability of 
the null hypothesis was < 0.05.

RESULTS

A comparison of the  CVP effect on the blood  CORT 
concentration in  MET-treated and  MET-untreated rats 
is shown in Figure 1. In MET-untreated rats, administra-
tion of CVP resulted, 3 h after the pesticide administra-
tion, in a  dose-related rise in plasma  CORT concentra-
tion (Jonckheer’s trend test, pj < 0.005). In rats receiving 

* p < 0.05 compared to control. 
Metyrapone at doses of 100 mg/kg i.p. was administered 5 times 
at 24 h intervals; the first metyrapone dose was given 2 h before 
the CVP administration. Data (means ±SEM, N = 4–5) are presented 
as percent of the values measured at the same time points in the 
respective control groups (SAL/0.0, or MET/0.0).  
In the control groups the plasma corticosterone concentration ranged 
from 12.19 to 29.47 ng/ml.

Fig. 1. Diagrams illustrating changes in the plasma 
corticosterone concentration following CVP (0.5, 1.0 
or 3.0 mg/kg i.p.) administration to metyrapone-treated 
and metyrapone-untreated rats
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In the  MET-treated rats,  CVP administration at the  0.5 
or  1.0  mg/kg dose resulted in no significant alterations in 
the  ChE activity in any of the compartments tested. In rats 
given CVP at the 3.0 mg/kg dose, the plasma ChE activity was 
significantly reduced at 3 and 24 h, and that of the brain ChE 
at 24 h after the pesticide administration. In both those com-
partments, however, the reduction was less pronounced than 
that noted in the MET-untreated rats given the same CVP dose.

DISCUSSION AND CONCLUSIONS

As expected, the CVP administrations resulted in: 
–– a decrease in the ChE activities in blood and in the brain; 

in all studied compartments, the magnitude of this ef-
fect was positively correlated with the  CVP dose; the 
decrease was most pronounced in plasma but, generally, 
the differences between compartments were not great; 
the enzyme activity returned to normal within several 
days at a rate correlated with the dose (faster at lower 
doses) and the compartment (faster in case of plasma);

–– an  increase in the serum  CORT concentration, 
i.e. the CORT response. 

Restitution of the enzyme activity was the fastest in plasma; 
in all groups it was complete by day 7, whereas in the erythro-
cytes and the brain of rats given 1.0 or 3.0 mg/kg, at that time 
the ChE activities were still significantly reduced at that time. 
By day 21, restitution was complete in all compartments.

* p < 0.05, ** p < 0.01, and *** p < 0.001 compared to control. 
Remaining description as in Figure 1. 
The control values in the plasma ChE activities ranged 
1.02–1.89 μmol/min per 1 ml.

Fig. 2. Diagrams illustrating changes in the plasma ChE 
activities following CVP (0.5, 1.0 or 3.0 mg/kg i.p.) 
administration to metyrapone-treated and metyrapone-
untreated rats

* p < 0.05 and *** p < 0.001 compared to control.  
Remaining description as in Figure 1. 
The control values in the erythrocyte ChE activities range 
14.10–22.40 μmol/min per 1 ml.

Fig. 3. Diagrams illustrating changes in the erythrocyte ChE 
activities following CVP (0.5, 1.0 or 3.0 mg/kg i.p.) 
administration to metyrapone-treated and metyrapone-
untreated rats

* p < 0.05, ** p < 0.01 and *** p < 0.001 compared to control. 
Remaining description as in Figure 1. 
The control values in the brain ChE activities ranged  
0.17–0.25 μmol/min per 1 mg protein.

Fig. 4. Diagrams illustrating changes in the brain ChE activity fol-
lowing CVP administration in metyrapone-treated and metyrapone-
untreated rats
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synthesis after incubation with CORT [28]. Based on the 
above observations, one might expect an amplification 
of the  OP-induced  ChE inhibition and/or slowing down 
the rate of restitution of the activity in  the MET  treated 
animals. An effect of this kind, i.e. “... decreased rate of 
regeneration of brain and striate muscle acetylcholinester-
ase...” was noted in adrenalectomized mice after sublethal 
poisoning with diisopropylphosphofluoridate (DFP) [29].
In the present study the effect of MET treatment, i.e. the 
compromised  ChE inhibition and the accelerated resti-
tution, was apparently opposite to that cited above, thus 
raising the question whether it could be due to a  MET-
induced inhibition of the  CORT synthesis. Some au-
thors reported a  reduction in  AChE activity after stress 
[22–24,44]. Similar effect was observed in striate muscles 
of animals treated with CORT [26,45] or dexamethasone, 
a syntetic glucocorticoid [27]. These observations suggest 
that an excess of glucocorticoids might downregulate, di-
rectly or indirectly, the ChE activity. If so, then in the case 
of the OP poisoning, the induced CORT response might 
somehow amplify the effect of the pesticide, i.e. the reduc-
tion in ChE activity. In such a case, the weaker reduction 
in ChE activity in MET-treated rats after CVP exposure 
could be explained as a result of the absence of the CORT 
response (i.e. the transient excess of glucocorticoids).
The above conjecture may be confirmed by administer-
ing  CVP to adrenalectomized and  CORT-supplemented 
rats. At present we are not in possession of our own data 
from an experiment like that. However, some speculations 
based on several published reports seem to be reasonable. 
It has been shown, for example, that adrenalectomized 
animals (rats) do not differ from controls (unoperated 
or sham operated) with regard to  AChE inhibition after 
an OP exposure [15,25]. Moreover, it has been found that 
atropine pretreatment in soman-intoxicated rats prevented 
the CORT response but had no effect on the level of AChE 
inhibition  [14,15]. The above observations suggest that in 
case of an OP intoxication, unlike in case of exposure to 

Also in this case the magnitude of this effect was positively 
correlated with the CVP dose. It disappeared within 24 h. 
(The intervals between successive measurements did 
not enable a more precise assessment of the duration of 
the CORT response in the present study).
Both effects reported above are characteristic for the ma-
jority of OPs, including CVP [13,31] and require no discus-
sion. The most important issue is the effect of MET. The 
results show that the treatment resulted in reduction of 
the CVP-induced CORT response, markedly weaker ChE 
inhibition and accelerated recovery of the enzyme activity 
in all studied compartments. It is worth noting, however, 
that in the case of the plasma ChE the protective effect of 
the MET treatment was weaker, especially in the MET/3.0 
group vs. remaining compartments. The most likely source 
of this difference may be the large contribution of BuChE 
to the plasma ChE activity; BuChE is known to be inhib-
ited more effectively by most OPs than AChE [39].
MET is a known inhibitor of the CORT synthesis [32,40]. 
Therefore, the absence of the CORT response in the MET-
treated rats of the present study was the expected outcome. 
A number of published works allowed one to predict that 
a blockade of the CORT synthesis might somehow mod-
ify the CVP effect: the magnitude of the ChE inhibition 
and/or the rate of the restitution of the enzyme activity. 
They do not allow, however, to predict the trend of the 
expected change. A transient rise in blood CORT concen-
tration is a known response to various stressors. However, 
exposure to stressors results also in changes in  ChE ac-
tivities and an involvement of CORT in this effect seems 
quite likely. Kaufer  et  al.  [10,11] for example, observed 
increased AChE synthesis in the neocortex and hippocam-
pus after exposure to a physical stressor or an OP expo-
sure. Increased AChE activity after exposure to stressors 
was also reported by other authors  [18–21,41–44]. An 
involvement of  CORT in these effects is suggested by 
some  in  vitro observations on PC  12 cells which showed 
an increase in AChE catalytical activity and AChE RNA 
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Exposure to CVP, like exposure to other OP insecticides, re-
sults in generation of reactive oxygen metabolites and oxida-
tive stress [62,63]. It is also known that cytochrome P450 par-
ticipates in the CVP metabolism  [64,65] and it is likely that 
the P450 activity is an important cause of the CVP-induced 
oxidative stress. Thus, inhibition of the P450 system by MET 
limits the oxidative stress generation and, owing to that, pro-
tects, albeit partially, ChE from inhibition. However, on the 
other hand, inhibition of the P450 system may result in slowing 
down the CVP metabolism, what should increase rather than 
decrease its toxicity. Keeping this in mind, the MET effect ob-
served in the present work might suggest that the benefits from 
the reduction of the oxidative stress, assessed on the basis of 
the reduction in ChE activity, are greater than the losses re-
sulting from slowing down the CVP metabolism.
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