EFFECTS OF REAL AND SIMULATED WEIGHTLESSNESS ON THE CARDIAC AND PERIPHERAL VASCULAR FUNCTIONS OF HUMANS: A REVIEW

HUI ZHU1, HANQING WANG2, and ZHIQIANG LIU1

1 Central South University, Changsha, Hunan, China
School of Energy Science and Engineering
2 Hunan University of Technology, Zhuzhou, Hunan, China
Collaborative Innovation Center for Energy-conservation in Buildings and Environment Control

Abstract
Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV) mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness) are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented.

Key words:
Weightlessness, Cardiac functions, Peripheral vascular functions

INTRODUCTION
Cardiovascular system of humans has adapted to Earth’s gravity of 1 G over millions of years. When exposed to weightlessness, however, the cardiovascular functions change considerably in respect of blood redistribution, elevated compliance of the lower body veins, contractility of the heart, cardiac arrhythmia and orthostatic intolerance, all of which may be detrimental to the health of the astronauts. It has been reported that one of the astronauts on Apollo 15 suffered myocardial infarction after spaceflight, and another astronaut on Soyuz had to go back to Earth due to the severe cardiac arrhythmia.

As the rapid development of space exploration continues, manned spacecrafts are increasingly preferred. The United States and Russia have launched their manned spacecrafts successfully since last century. What’s more,
the spaceflight duration is increasing and the activities of the astronauts in spacecraft nowadays are much more frequent, especially the extra-vehicular activities (EVA). Therefore, more challenges will be faced by the cardiovascular system of the astronauts, and researches on the cardiovascular system in weightlessness are of great significance since it is important to ensure that the astronauts are in good working performance and remain healthy and safe during the spaceflight.

Since the early 1960s, studies on the effects of weightlessness on human cardiovascular system during spaceflights have produced a great number of conclusions. Meanwhile, terrestrial experiments with simulated weightlessness have also provided an amount of meaningful information. Based on the studies in the latest decade, the effects of weightlessness on human cardiovascular functions are reviewed, to explore and develop an understanding of the physiological challenges faced by the astronauts when working or living in weightlessness (prolonged weightlessness in particular).

EFFECTS OF THE WEIGHTLESSNESS ON HEART
Shape and mass of the heart
The shape of the heart will change in weightlessness, which is demonstrated by the cardiac sphericity and the Geometric Aspect Ratios (GAR, length to width quotient). According to the finite element simulation, the GAR of the left ventricle decreases by 3.65% in weightlessness compared to the value in terrestrial conditions, which results in the changes of the radius of curvature of the heart [1,2]. The conclusion has been verified by the data from spaceflight. During the spaceflight, diastolic dimensions of the left ventricle of 4 astronauts were measured with echocardiography first, then the dimensions were translated into circularity indices and GAR. The results indicate that the average circularity index increases by 4.1% while the GAR decreases by 5.3% [3]. These findings suggest that the heart is more spherical in weightlessness.

In addition to the shape, the mass of the heart also changes in weightlessness. Bed rest experiment was carried out by Perhonen et al. to evaluate the cardiac mass in simulated weightlessness [4]. In the experiment, 5 subjects were in horizontal bed rest for 6 weeks, and 3 of the 5 subjects continued the experiment till the end of the 12th week. And the ventricular mass was obtained by means of Magnetic Resonance Imaging (MRI) with Simpson’s rule technique. The results indicate that the mass of the left and right ventricle decreases by 8±2.2% and 10±2.7% respectively, and the wall thickness of the left ventricle decreases by 4±2.5% [4] after 6 weeks of bed rest (N = 5).

In addition to the evidences from the bed rest experiment, the findings during the spaceflights also prove that the cardiac mass is decreasing. Early in 1977, Henry et al. [5] reported a mass reduction of the left ventricle in 3 astronauts during the Skylab-4 mission (from November 16, 1973 to February 8, 1974). Later, during the 2nd German Spacelab mission Spacelab D2 in 1993–1994 the average left ventricular mass decreased by 12±6.9% among the 4 astronauts.

In recent years, the echocardiographic measurements of left ventricular mass in astronauts have been carried out, and the results demonstrate a comparative 9.1% reduction in post-flight left ventricular (LV) mass that returned to preflight values by the 3rd day of recovery [6]. The phenomenon is attributed to the loss of fluid volume, although according to some other opinions, the LV mass reduction in spaceflight is due to the loss of myocardial mass [7,8].

Cardiac function alterations
It has been proved that the heart rate, cardiac output, systolic and diastolic pressure are influenced by weightlessness. During spaceflight, the heart rate is lower than that on Earth (standing posture). Heart rate was measured on International Space Station (ISS) with electrocardiogram (ECG) among 11 astronauts during a 6-month mission [9]. The consecutive RR-intervals recorded by
Cardiac arrhythmia

The cardiac arrhythmia, such as the premature ventricular contractions (PVCs), premature atrial contractions (PACs) and prolongation of the time interval between the start of the Q wave and the end of the T wave in the heart’s electrical cycle (QT interval prolongation), is often observed in spaceflights and head down tilt (HDT) experiments. In earlier days, PVCs and PACs were believed to be caused by the psychological factors of the astronauts, instead of the weightlessness per se [17]. For example, PVCs experienced by 9 astronauts in 42 spaceflights between 1964 and 1985 were ascribed to the psychological stresses [18]. Later on, physical stress and potassium deficiency in weightlessness were proved to be the causes of cardiac arrhythmia. During the Apollo 15 mission, astronaut James Benson Irwin suffered bigeminal PVCs and premature atrial contractions (PACs). The cause of those arrhythmias was found to be related to a decrease in the total body potassium level and the heavy workload on the surface of the Moon [19].

Recent findings suggest that the lack of gravitational stress during long-term spaceflights is associated with the adaptive changes in cardiovascular structure and neurohumoral control circuits. These changes increase the probability of cardiac arrhythmias and eliminate the ability of the cardiovascular system to cope with gravitational stress post-flight [20].

In addition to PVCs and PACs, QT interval prolongation is another common cardiac arrhythmia in real and simulated weightlessness. Generally speaking, QT interval changes little in short-duration spaceflight (5–10 days, N = 11, male), and the QT interval prolongation occurs between the 9th and 30th day of spaceflight [21]. This observation has been verified by Anzai [22]. The average QT interval was found to be longer than 0.45 in 24% of the astronauts on MIR Station and ISS, which suggested that the ventricular repolarization process might be altered during long-duration spaceflight [23].
What’s more, the QT interval prolongation may increase the risk of torsades de pointes (TdP) that can result in myocardial repolarization disorder [24]. According to the recent findings, there are 3 possible causes of the QT interval prolongation in weightlessness. First, higher incidence of bradycardia during long-duration spaceflights rather than short-duration spaceflights can result in QT interval prolongation. Second, changes in the autonomic nervous system (such as a higher tension of the vagus nerve) caused by weightlessness can also affect the QT interval [25,26]. Third, cardiac function alterations induced by weightlessness, such as the reduced contractile function, may also influence the QT interval prolongation [27]. And finally the medication usage during the space missions such as ciprofloxacin, haloperidol, propranolol and nortriptyline may also affect the QT interval.

Except PVCs, PACs and QT interval prolongation, there are other kinds of cardiac arrhythmias, such as short-duration atrial fibrillation and non-sustained ventricular tachycardia. It has been reported that ventricular tachycardia (VT) was recorded on MIR station with maximum rate of 215 beats per min during a long-duration spaceflight. Possible cause could be the change in the ventricular mass or volume, an electrolyte disturbance and autonomic alterations due to weightlessness [28].

A series of possible causes of the cardiac arrhythmias have been put forward in the latest decade, including the underlying heart diseases of the astronauts, unbalance of the electrolyte (such as lower potassium level in human body), increased catecholamine secretion, high tension of the vagus nerve. Evidences from the recent animal experiments have indicated that the myocardial connexin reconstruction occurs under simulated weightlessness, which results in the abnormality of the cardiac electrical conductance and formation of the microreentry. As a result, the cardiac arrhythmia occurs [29]. However, further study is needed to examine whether the same phenomenon happens in humans.

EFFECTS OF WEIGHTLESSNESS ON PERIPHERAL VESSELS

Lower body vascular regulation

Dynamic regulation of the lower body vascular system is one of the adaptive changes occurring in human body during weightlessness. However, the weightlessness has inconspicuous influences on the arterial system due to its wall thickness, and the regulation is mainly reflected by the alteration of the vascular resistance and the vascular tone.

Spaceflight extension can weaken the lower body arterial resistance and affect the regulation of the vascular tone. Further, the Lower Body Negative Pressure (LBNP) test has been conducted during different periods of the prolonged spaceflight to investigate the hemodynamic characteristics of the cerebral circulation. In the test, 15 subjects were put into the negative pressure device which pulls the blood of the subjects from the upper body to the lower body, meanwhile the hemodynamic parameters were measured with echography and Doppler ultrasonic flowmetry.

A cerebral circulation deficiency was observed through the LBNP test. Besides, during the LBNP test, a decline of the gravity-dependent reactions was also observed, which was a function of the spaceflight duration [30]. In addition, measurements on the MIR station among 6 astronauts during a 6-month mission were conducted. The results indicate that lower-limb resistance decreases (–5% to –18%, p < 0.05) throughout the flights, and femoral vein cross-sectional area is enlarged after the 1st week of the spaceflight (+15% to +35%, p < 0.05) [31].

Another important change of the artery in weightlessness is the alteration of the arterial vascular tone. Reduction of the constrictive ability of large blood vessels of the lower extremities has been observed during spaceflight, which impairs the regulation of the artery and finally decreases the orthostatic stability [32]. It has been reported recently that the vascular tone of the lower-limb arteries of the astronauts is in decline after working and living in ISS.

Except PVCs, PACs and QT interval prolongation, there are other kinds of cardiac arrhythmias, such as short-duration atrial fibrillation and non-sustained ventricular tachycardia. It has been reported that ventricular tachycardia (VT) was recorded on MIR station with maximum rate of 215 beats per min during a long-duration spaceflight. Possible cause could be the change in the ventricular mass or volume, an electrolyte disturbance and autonomic alterations due to weightlessness [28].

A series of possible causes of the cardiac arrhythmias have been put forward in the latest decade, including the underlying heart diseases of the astronauts, unbalance of the electrolyte (such as lower potassium level in human body), increased catecholamine secretion, high tension of the vagus nerve. Evidences from the recent animal experiments have indicated that the myocardial connexin reconstruction occurs under simulated weightlessness, which results in the abnormality of the cardiac electrical conductance and formation of the microreentry. As a result, the cardiac arrhythmia occurs [29]. However, further study is needed to examine whether the same phenomenon happens in humans.
for 6 months [33]. The alteration of the lower-limb artery tone is a function of the spaceflight extension, which is found to be reduced in short-term spaceflight while elevated in long-term spaceflight [7,34]. Alteration in arterial tone is believed to be caused by the local remodeling within vascular wall, and it may play a significant role in weightlessness-induced orthostatic intolerance [35].

The influence of the weightlessness on lower-limb veins is more profound, including the changes in blood filling, vascular compliance and the veins capacity. The blood filling is in decline and the blood flow in the lower extremities decreases, due to the weightlessness induced blood redistribution. Measurements with venous occlusion plethysmograph (VOP) on 7 astronauts preflight, in-flight and post-flight were conducted. The results showed that the calf blood flow decreased by 41% in weightlessness (to 1.15±0.16 ml × 100 ml⁻¹×min⁻¹) relative to terrestrial supine conditions (1.94±0.19 ml × 100 ml⁻¹×min⁻¹, p = 0.01) [36]. However, there are different findings. During an 84-day mission on Skylab-4, the blood flow of 2 astronauts (3 in total) at rest was found to increase by 100–500%, between day 13 to day 76 [37]. This could be the result of the body fluid compensation caused by hypovolemia in weightlessness.

In addition to the blood filling, compliance of the lower-limb veins is also affected by weightlessness. It has been verified that the compliance of the lower-limb veins elevates at the beginning of spaceflight, then decreases with the spaceflight extension and keeps at a certain level that is higher than preflight values. Data from the spaceflight have proved the notion. During a 6-month spaceflight, increased leg veins dilation and compliance were persistently observed among 8 astronauts from the early period of spaceflight (weeks 1–2), and the increase was still considerable till months 2–3 of exposure to weightlessness and tended to stabilize at the end of the 6th month [38].

Changes in the compliance of the lower-limb veins in weightlessness are associated with the altered structure and function of the vessels, and to some extent due to the decreased muscle tone. However, evidences from other spaceflights and –6° HDT experiments lead to the opposite conclusions. For example, by blocking the vein of the calf, Watenpaugh [36] found that venous compliance of lower limbs increased only at the 1st week after spaceflight. And a 120-day –6° HDT experiment was carried out by Christ, during which 6 subjects were placed on a modified bed that sustained –6° HDT and this posture was continuously maintained throughout the 120 days. In the experiment, venous congestion strain gauge plethysmography (VCP) technique was employed to evaluate the hemodynamic characteristics. The results also suggest that after 118 days, the steady-state peripheral arterial blood flow and venous compliance decreased [39].

What’s more, data from the –6° HDT experiment of the “Earth Star-1” project of China Astronaut Research and Training Center indicate that a sharp decrease of the lower venous compliance occurs, together with an increase of the total peripheral vascular resistance [40].

The influence of the weightlessness on lower-limb veins is more profound, including the changes in blood filling, vascular compliance and the veins capacity. The blood filling is in decline and the blood flow in the lower extremities decreases, due to the weightlessness induced blood redistribution. Measurements with venous occlusion plethysmograph (VOP) on 7 astronauts preflight, in-flight and post-flight were conducted. The results showed that the calf blood flow decreased by 41% in weightlessness (to 1.15±0.16 ml × 100 ml⁻¹×min⁻¹) relative to terrestrial supine conditions (1.94±0.19 ml × 100 ml⁻¹×min⁻¹, p = 0.01) [36]. However, there are different findings. During an 84-day mission on Skylab-4, the blood flow of 2 astronauts (3 in total) at rest was found to increase by 100–500%, between day 13 to day 76 [37]. This could be the result of the body fluid compensation caused by hypovolemia in weightlessness.

In addition to the blood filling, compliance of the lower-limb veins is also affected by weightlessness. It has been verified that the compliance of the lower-limb veins elevates at the beginning of spaceflight, then decreases with the spaceflight extension and keeps at a certain level that is higher than preflight values. Data from the spaceflight have proved the notion. During a 6-month spaceflight, increased leg veins dilation and compliance were persistently observed among 8 astronauts from the early period of spaceflight (weeks 1–2), and the increase was still considerable till months 2–3 of exposure to weightlessness and tended to stabilize at the end of the 6th month [38].

Changes in the compliance of the lower-limb veins in weightlessness are associated with the altered structure and function of the vessels, and to some extent due to the decreased muscle tone. However, evidences from other spaceflights and –6° HDT experiments lead to the opposite conclusions. For example, by blocking the vein of the calf, Watenpaugh [36] found that venous compliance of lower limbs increased only at the 1st week after spaceflight. And a 120-day –6° HDT experiment was carried out by Christ, during which 6 subjects were placed on a modified bed that sustained –6° HDT and this posture was continuously maintained throughout the 120 days. In the experiment, venous congestion strain gauge plethysmography (VCP) technique was employed to evaluate the hemodynamic characteristics. The results also suggest that after 118 days, the steady-state peripheral arterial blood flow and venous compliance decreased [39].

What’s more, data from the –6° HDT experiment of the “Earth Star-1” project of China Astronaut Research and Training Center indicate that a sharp decrease of the lower venous compliance occurs, together with an increase of the total peripheral vascular resistance [40].

The differences between the conclusions lie in the determination of the venous compliance of the lower limbs. Traditionally, variation of the lower-limb venous compliance is determined by the change rate of the lower-limb volume. But the change rate of the lower-limb volume is affected by many factors such as the venous system, the muscle and body fluid, therefore the change rate of the lower-limb volume cannot reflect the changes of venous compliance correctly [41].

A result of the elevated venous compliance in weightlessness is that more blood will stay in the lower limbs of humans (standing posture), thus the blood flow returning to the right atrium decreases, which further results in the decreased cardiac output and mean arterial blood pressure. Therefore, the alterations of the compliance of the veins in lower extremities are the potential mechanism of the orthostatic intolerance after exposure to real and simulated weightlessness [42]. Evidences from the recent spaceflight
have validated the idea that capacity of leg veins increases in weightlessness. Data from the MIR station indicates that the maximum capacity of leg veins increases during the 1st week, and the change becomes more pronounced after 30–40 days and is followed by a relative stabilization of hemodynamics at rest [30]. What’s more, analysis of the hemodynamic data over 20 years from 26 astronauts on Salyut 7 and MIR station was conducted, and the results showed that the resistance of the lower-limb vessels decreased, but the capacity of the leg veins increased. And the LBNP test revealed the reduction of the gravity-dependent reactions which got more conspicuous as flight duration extended further [43].

Multifactorial explanation for the changes in lower-limb veins has been put forward by researchers as below [44]. Changes of the hydrostatic pressure induced by weightlessness cause the decreased venous pressure in the lower body. Meanwhile, inactivity and the muscle atrophy in weightlessness result in the decreased blood flow in veins of the lower limbs. Moreover, decreased gravitational stimulations to the cardiovascular system in weightlessness lead to a weakened auto-regulation of the veins. The combined effects of these changes finally result in the decreased contractile response of the smooth muscle, reduced innervations and the atrophy of the vessel wall, which further bring about the alterations of the veins in lower extremities in weightlessness.

Upper body vessel regulation
In the researches concerning the upper body vascular system, more attention has been paid to the cerebral circulation. The auto-regulation of the cerebral vasculature guarantees the normal blood flow and blood pressure in the head, even in weightlessness. As reported in the previous parts of this literature review, blood shifts to the upper body in weightlessness, therefore the blood flow velocity, blood filling and vascular resistance in the head are supposed to be different from that on Earth. As for the changes of blood flow velocity, most work has been focused on the flow velocity in the middle cerebral artery. But there are discrepancies till now. Data from the Neurolab space shuttle mission suggested that the middle cerebral artery blood flow velocity of 6 astronauts at rest did not change significantly from the preflight values during or after spaceflight [45]. However, some other authors have come to opposite conclusions [46,47]. The differences may result from the experimental methods, posture, and physiological differences of the astronauts, therefore further investigations are still needed in the future.

In addition, the –6° HDT experiments showed that the systolic blood flow velocity and mean blood flow velocity in the right middle cerebral artery decreased significantly compared with the pre-HDT values, while the systolic and mean blood flow velocity in the left middle cerebral artery increased at the beginning of the experiments but decreased thereafter [48]. The finding is in good agreement with the conclusion presented by Satake in 1994 [49].

In addition to the blood flow velocity and blood filling, the blood pressure and cerebral resistance are also influenced by the weightlessness. The computational simulation conducted by Feng [50] in 2006 indicates that the cerebral blood flow elevates by 10% and the carotid artery pressure increases by 10 mm Hg in weightlessness, compared with the values in the terrestrial circumstances [51]. During spaceflight, elevated cerebral artery blood pressure has been observed, with the blood congestion in the jugular veins [52]. And the cerebral venous congestion is also observed in simulated weightlessness. For example, –6° HDT experiments recorded by Kawai and Marshall-Bowman suggest that the venous return decreases and more blood stays in the cerebral and jugular veins [53,54]. As for the changes in cerebral vascular resistance in weightlessness, there are different opinions. For example, Arbeille et al. observed reduced cerebral vascular resistance in 1 astronaut in the middle of a 25-day spaceflight, though they had also seen the tendency for
Moreover, potential directions that are closely related to the health, safety and working performance of the astronauts are put forward in this review. First, study and development of the countermeasures against the adverse effects of weightlessness, such as the reduced aerobic capacity and orthostatic intolerance, are still important in the future. Second, changes in the autonomic nerve induced by weightlessness have significant impacts on the heart and peripheral vessels of humans, and further research is still needed to determine the mechanism. Third, more attention should be paid to the mechanism and measures intended to prevent cardiac arrhythmia caused by weightlessness. Finally, little research has been done on the thermal comfort of the astronauts during spaceflight. Actually, the thermal environment in the spacecraft and the thermal regulation (closely related to the cardiovascular system) of the humans in weightlessness greatly differ from that on Earth. Therefore, more attention should be paid in the future to studies on thermal comfort of the humans in weightlessness.

ACKNOWLEDGMENTS
The authors would like to express their appreciation to the National Natural Science foundation of China and Hunan Provincial Innovation Foundation for the financial support for this study.

REFERENCES

21. Mitchell BM, Meck JV. Short-duration spaceflight does not prolong QTc intervals in male astronauts.
41. Yue Y. Changes in compliance of femoral vein after simulated weightlessness in rabbits with histomorphology correlation [dissertation]. Xi’an: The Fourth Military Medical University; 2003.