1.191
IF5
0.947
IF
15
MNiSW
149.8
ICV
ORIGINAL PAPER
 
CC BY-NC 3.0 Polska
 
 

Overall human mortality and morbidity due to exposure to air pollution

Lucyna Samek 1  
 
1
AGH University of Science and Technology, Kraków, Poland (Faculty of Physics and Applied Computer Science)
Int J Occup Med Environ Health 2016;29(3):417–426
KEYWORDS:
TOPICS:
ABSTRACT:
Objectives: Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005–2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. Material and Methods: The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Results: Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. Conclusions: The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems.
CORRESPONDING AUTHOR:
Lucyna Samek   
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Mickiewicza 30, 30-059 Kraków, Poland
eISSN:1896-494X
ISSN:1232-1087